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Abstract 

We use braided groups to introduce a theory of *-structures on general inhomogeneous quantum 
groups, which we formulate as quasi-* Hopf algebras. This allows the construction of the tensor 
product of unitary representations up to a quantum cocycle isomorphism, which is a novel feature 
of the inhomogeneous case. Examples include q-Poincarb quantum group enveloping algebras 
in R-matrix form appropriate to the previous q-Euclidean and q-Minkowski space-time algebras 
R~IXIX~ = ~2x1 R and R21z41 Ru2 = ~2 R21241 R. We obtain unitarity of the fundamental differential 
representations. We further show that the Euclidean and Minkowski-PoincarC quantum groups are 
twisting equivalent by another quantum cocycle. 
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1. Introduction 

As well as specific roles in physical systems, quantum groups in recent years have moti- 
vated a quite general and systematic development of a kind of q-deformed geometry. The 
basic algebraic ingredients are quite well-understood by now, at least for the geometry of q- 

deformed compact groups (typically quantum groups [ 1,2]) and q-deformed linear spaces 
(typically the more novel braided groups introduced by the author [3]). Not understood, 
however, is the full story regarding the role of the *-structure or complex conjugation in 
this q-geometry. This is obviously important for contact with physics, where q-deformed 
field theories are expected to be of interest either as providing a regularisation of infinities 
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as poles at q = 1 [4] or as effective theories modelling the feedback of quantum or other 
effects on geometry at the Planck scale [5,6]. An understanding of the *-structure is needed 
also for better contact with other C*-algebra approaches to noncommutative geometry [7]. 

The present work follows on from a previous one [8] where we studied the *-structures 
on linear braided groups. Now we combine the considerations there with a previous general 
construction [9] for inhomogeneous quantum groups in order to develop a theory of *- 
structures on these. Many authors have considered q-Poincare and other inhomogeneous 
quantum groups as a key step for q-deformed physics but found that they do not (in the 
examples that concern us here) have *-structures obeying the usual axioms [lo] of a Hopf *- 
algebra. In physical terms it means that the ‘unitary’ (*-preserving) representations of these 
inhomogeneous quantum groups are not closed under tensor product. This is problematic 
and tells us that we need a more radical q-deformation of the concept of ‘unitarity’ as well. 
We propose in the present paper a solution to this long-standing problem. It was announced 
briefly at the end of [ 1 l] and is developed now in detail. In physical terms, we will see that 
quantum deformation introduces a kind of ‘anomaly’ in the sense of a cocycle governing the 
breakdown of unitarity. Actually, something like this is to be expected because if we view 
q-deformation as a regularisation scheme for field theory, we do have to recover anomalies 
in the cases where they exist. For example, unlike dimensional regularisation there is no 
problem with the E tensor and we have to expect a problem in different quarter to generate 
the U (1) axial anomaly. 

Namely, we introduce the notion if a quasi-* Hopf algebra, which is a Hopf algebra where 
the algebra part is a *-algebra and the coalgebra A, E obeys 

(*@*)oAo+=R-‘(ToA)R, ??( ) = co*, R *c3* _ - R?l, 

(id 8 A)R = R13R12 (A ‘8 id)R = Rt3%!23 

for some element R in the tensor square. We use the usual notations as in ( 12,131 or the text 
[ 141. The above axioms are a generalisation both of the usual axioms of a Hopf *-algebra 
and of Drinfeld’s axioms of a quasitriangular Hopf algebra. They reduce to one iff they 
reduce to the other, in which case they reduce to a quasitriangular Hopf *-algebra of real 
type. This formulation covers the examples that interest us when q is real: one can also 
consider a different framework suitable for R*@* = R-t though we do not do so here 
explicitly. We arrive at these axioms in Section 2, where we study in detail the abstract 
construction of inhomogeneous quantum groups from the ‘braided geometry’ approach 
based on a process of bosonisation introduced by the author in [ 151. This associated to any 
braided group (in our case the linear or ‘momentum’ sector of the inhomogeneous quantum 
group) an ordinary quantum group by a certain semidirect product construction. We also 
study in Section 2 how the bosonisation changes under twisting by a quantum cocycle, cf. 
the ideas of Drinfeld in [ 161. 

In the ‘braided approach’ to q-deformed geometry we begin with braided group defor- 
mations of R” as the basic objects. The braiding (and q) enters in a way that is conceptually 
different from other approaches to non-commutative geometry, namely as braid statistics 
with which we explicitly endow the co-ordinates of the q-deformed R”. This is the key 
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difference between the more familiar quantum groups (which are bosonic objects) and the 
new braided groups. For a full introduction to the latter we refer to [17-191 as well as 
the orginal works [3,20], etc. There is a solid theory of braided matrices, braided linear 
algebra, braided addition, braided differentiation, ‘Poincare’ quantum groups, differential 
forms, epsilon tensors and integration developed in a series of papers [3,9,21-241. There 
are also natural candidates for q-Minkowski [25-271 and q-Euclidean [28] space-time al- 
gebras within this programme, making contact too with earlier pioneering work in [29-3 I] 
where the same space-time algebras were proposed directly by other means. The braided 
approach extended the latter works and put them, moreover, into a general R-matrix form as 
part of uniform theory of braided spaces. The present work on quasi-* Hopf algebras applies 
to all the inhomogeneous quantum groups in this approach [9] for which suitable reality 
properties are met. This includes the q-Euclidean group of motions ‘wi >cl U, (son) in any 
dimension, and also the four-dimensional Minkowski version. These and other examples 
are described in detail in Section 3. We also show that the inhomogeneous quantum groups 
for the four-dimensional Euclidean and Minkowski cases are related by twisting, extending 
the ‘quantum wick rotation’ in [28]. 

In Section 4 we look at the representation theory of quasi-* Hopf algebras and inhomoge- 
neous quantum groups from the point of view of our braided approach. This approach brings 
out the deeper meaning of the role of * in braided geometry as a combined conjugation- 
braid reversal symmetry of our constructions. The seeds of this idea are already implicit 
in the earliest works on quantum groups, where the conjugate If generators of a quantum 
enveloping algebra [32] are associated to a universal R-matrix and its inverse-transpose, 
respectively. In braided geometry all our constructions are done by means of braid and 
tangle diagrams representing the ‘flow’ of algebraic information, with the braiding p = S 
playing the role of usual transpositions between independent symbols in ordinary math- 
ematics, or of super transposition between independent symbols in super constructions. 
This menas, however, that in making braided versions of classical constructions we have 
to make choices of under- or over-braid crossing. Whatever construction we do, we could 
make a parallel one in the braided category with ‘conjugate’ or inverse braiding where the 
role of under- and over-braid crossings is reversed [ 171. The idea is that in the braided ap- 
proach our usual classical geometry splits into nyo braided versions related by a combined 
braid-reversal and * symmetry. This is a new phenomenon not visible classically or even 
in super geometry, where t& * = id. Note that these braids do not live in physical space 
but in the three-dimensional ‘lexicographical space’ in which we write our mathematical 
constructions diagrammatically. 

The idea of * mapping between two versions of q-deformed geometry rather than being 
(as more usual) a property of one system, is evident in the theory of *-structures on linear 
spaces developed in [S], where, for example, we viewed * : L?L -+ f& between left 
and right versions of the q-deformed exterior algebra. We have the same phenomenon 
for q-deformed Poincare quantum group function algebras. In the present context of the 
Poincare enveloping algebra quantum groups it means that we have two natural coproducts, 
connected by *. This means in turn that we have two natural representations of each q- 
Poincare enveloping algebra by braided differentiation on the q-space-time co-ordinates. 
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We can use either the differentials a from [22] or ‘conjugate’ ones 3 defined with the inverse 
braiding in their braided-Leibniz rules. This makes contact with examples of ‘conjugate’ 
derivatives in [33] and elsewhere, as well as with [34] where a ‘zero-dimensional’ toy 
model for a Poincare quantum group with two coproducts related by * was considered. The 
new feature in our approach is that these derivatives are constructed quite systematically 
from the braided coaddition (from left and right) and as such we now obtain a precise and 
complete general understanding of how they are related by * and with each other. The first 
main result, in Section 2, is that these two conjugate representations are isomorphic, being 
intertwined as 

by the braided antipode 2 or quantum parity operator x --z --x on our q-space-time co- 
ordinates. The second main result, in Section 4, is a general construction for a sesquilinear 
form or ‘inner product’ with respect to which the fundamental representation by translation 
and rotation is unitary. A general feature is that it is no longer exactly conjugate-symmetric 
but only, in case of q-Euclidean and q-Minkowski spaces, up to a power of q. We obtain 
in principle a braided version of the L* inner product on braided linear spaces, such that 
a and 8 are mutually adjoint (or such that a is self-adjoint up to 3). The computation of 
such inner products and development of the attendant ‘braided analysis’ are a direction for 
further work. 

We note that some of the R-matrix formulae in the present paper can (once found) be 
partially verified by direct calculations using the quantum Yang-Baxter equations (QYBE) 
many times. This would not, however, check the various other non-R-matrix relations among 
quantum group generators t, I* etc., in the notation of [32]. For a rigorous treatment that 
includes all such details automatically, the abstract setting which we use in the present paper 
is really needed. We use it in Sections 2 and 4 where we develop elements of the abstract 
bosonisation theory from [ 151, which in turn ensures consistency with respect to all such 
additional relations in the R-matrix formulae presented in Sections 3 and 5. 

I. I. Preliminaries 

We assume that the reader is familiar with the definition of a quasitriangular Hopf algebra 
H in [l] with quasitriangular structure or ‘universal R-matrix’ R = R(l) 8 IX(*) in H @ H 
(summation of terms implicit), and the dual notion of a dual-quasitriangular Hopf algebra 
A with dual-quasitriangular structure or ‘universal R-matrix funtional’ R : A @ A -+ @ in 
[35,36]. The latter is characterised by the axioms 

R(a 8 bc) = R@(t) @ cUWq2) C3 b), 

RW @ c> = R(a 63 c(~))R(b C3 c(2)), 

~(w(l)‘Wqz) 8 42)) = Wql) @ b(l))a(2)42). 

(1) 

The coproducts are denoted Aa = a(l) ~3 a(2), etc. (summation implicit). 
It is well-known that the category of representations (modules) of a quasitriangular Hopf 

algebra forms a braided category with braiding UI = s given by acting via R and then 
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making the usual transposition of the underlying vector spaces [ 1,13,37]. By braided cate- 
gory we mean a collection of objects with a tensor product which is associative and com- 
mutative up to isomorphism. We suppress the associativity isomorphism (which is trivial 
in our examples) and write the commutativity isomorphism as the braiding 9. There are 
various coherence axioms between these structures to the effect that the rules for working 
in a braided category are the obvious ones suggested by the braid-crossing notation. The 
category of corepresentations (comodules) of a dual-quasitriangular Hopf algebra likewise 
forms a braided category, with P given by coacting on each comodule, evaluating the rele- 
vant outputs against R and making the usual transposition of the underlying vector spaces 
[35,36]. Introductions are in [ 181. 

The notion of duality of Hopf algebras is best handled for our purposes as a duality 
pairing [ 13 ] between two Hopf algebras rather than regarding one as a subspace of linear 
functionals on the other. The product of one maps as usual to the coproduct of the other, 

(k ab) = (h(l), a)@(2), b), 

@g, a) = (k q)(g, U(2))> (2) 

(h, Sa) = (Sh, a) 

for all a, b E A, h, g E H. The axioms of a Hopf *-algebra have been studied extensively 
by Woronowicz [lo] and are that our Hopf algebra is a *-algebra and 

(* @ *) o A = A o *, e( )=co*, *os=s-lo*. (3) 

When we have a quasitriangular structure, it is natural to require R*@* = R21 or R*@* = 
R-’ as explained in [25,38] among other places. The first type is called real quasitriangular. 

We also assume that the reader is familiar with the basic notion of a braided group B 
or braided-Hopf algebra [36,39]. Introductions are in [ 17-191. A braided group B is like 
a quantum group but the coproduct a : B -+ B@B maps to the braided tensor product 
where the two factors in the tensor product do not commute. Instead they enjoy mutual 
braid statistics. In mathematical terms we have a Hopf algebra in a braided category, where 
the braiding rP between any two objects determines their mutual braided tensor product 
algebra. There are also more usual axioms for a braided antipode 2 : B -+ B and counit 
f : B -+ @. The diagrammatic way of working with braided groups consists of writing 
all maps as arrows generally pointing downwards. We write tensor products of objects by 
horizontal juxtaposition, ly = S as a braid crossing and ly -’ as the reversed braid crossing. 
We write other morphisms as nodes with appropriate valency. So the product morphism of 
a braided group is . = t,~ and the coproduct morphism is 4 = n . Functoriality of the 
braiding is expressed as being allowed to pull nodes through braid crossings as if they are 
beads on the string or tangle. The appropriate coherence theorem ensures that these rules are 
consistent and that ‘topologically equivalent’ diagrams correspond to the same algebraic 
operations. This kind of ‘braided algebra’ appeared in [ 151 and is a characteristic feature of 
the theory of braided groups [ 17,181. 

In practice, one can also work with braided groups without being too categorical: one 
can simply specify every time the required cross relations or braid statistics in the braided 
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tensor product BgB. We write b 3 b @ 1 for elements in the first factor and b’ E 1 @ b 

for elements of the second, and give the relations between b, b’ [3]. The abstract theory of 
braided categories is nevertheless needed to ensure that all these different braided tensor 
products are mutually consistent or ‘coherent’. Otherwise the idea would be too general 
and probably intractable. 

The appropriate axioms for a *-braided group were introduced in [25] for a large class 
of braided groups and confirmed in [8] for linear spaces. We require that our braided group 
is a *-algebra and 

(*@*)oA=toAo*, *os=so*, - - f( )=g.*, (4) 

where t is the usual transposition. The duality pairing ev = u for braided groups B, C is 

[I71 

ev Cab, c) = ev (a, c(2)) ev@, c(l)), 

ev (b, cd) = ev(b(2), c> ev (b(l)%, 

ev (Sb, c) = ev (bT&) - 

(3 

for all a, b E B, c, d E C. Here braided coproducts are denoted nb = b(l) @I b(2), 

etc. (summation implicit). Equivalently (if the braided antipode is invertible) %can & 

( , ) = ev (S-‘( >, ( 1) obeying 

tab, c) = (a, p(b @C(I)), c(2))> 

lb, cd) = (b(l), ‘Wq2~ c),dL 

(Sb, c) = (b,Sc), - 

(6) 

where we apply w and evaluate its left-hand output with (a, ) and its right-hand output 
with ( , c(2)), etc. This follows from the braided-antihomomorphism property [ 171 - 

20. = .o 9 0 (SBJ~s>, ~o~=(~@~)oPo~ 

for 3 and similarly (with V’) for S-t. It is to avoid the extra braiding that we generally 
prefer (5). In the case of strict duality where B = C* the map ev : C* @ C -+ @ comes 
also with a coevaluation coev = n, making C a rigid object in the braided category. When 
we have *-structures, their natural axioms under duality for quantum groups and braided 
groups are 

(h, a) = ((Sh)*, a), ev(b, c) = ev (b*. c’) (8) 

according to [lo] and [8] respectively. The *-operation c* compatible in this way is not 
necessarily ‘unitary’ in a natural sense but is often expressible in terms of second *-structure 
c* which is. This was already noted for braided linear spaces in [8] and will play a role in 
Sections 4 and 5. 

Among the main theorems about braided groups is that if B is any braided group living in 
the braided category of H-modules (H quasitriangular), then there is an ordinary quantum 
group B>a H called its bosonisution and characterised abstractly such that the ordinary 
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representations of Bx H are in l-l correspondence with the braided (H-covariant) rep- 
resentations of B [ 151. Explicitly, BNI H is generated as an algebra by H, B and has cross 
relations, coproduct and antipode 

hb = (h(l) D b)h(2), Ab = bC$ZC2) @I R (I) D b(2), Sb = (I&‘) D Jb)SRC2) - - 
(9) 

for all h E H, b E B. Here u = (SR(2))R(t) is an element of H. The algebra is a standard 
semidirect product by the canonical action D of H on B, while the coalgebra is a semidirect 
coproduct by the coaction induced by the universal R-matrix as explained in [20]. Likewise 
if B lives in the category of A-comodules (A dual quasitriangular) then there is an ordinary 
quantum group A E-C B called its cobosonisation, such that the ordinary corepresentations 
of A DC B are in l-l correspondence with the braided (A-covariant) corepresentations of 
B [25]. Explicitly, A K B is generated as an algebra by B, A and has cross relations, 
coproduct and antipode 

bu = uCllb(ik(b@) @ ~(~9, Ab = b# @ bC,+2)bC2), Sb = (Sb’i’)Sb(2’ - - - 
(10) 

for all a E A, b E B. This time the coalgebra is a semidirect coproduct by the coaction of A 
on B, which we denote b(‘) ~3 b@) for the resulting element of B 63 A (summation implicit). 

Finally, we recall a theory of twisting of quasiquantum groups due to Drinfeld [ 161. A 
special case of it implies at once that if H is a quasitrinagular Hopf algebra and x E H @ H 
a quantum 2-cocycle in the sense 

x10 @ id)x = x23W ~3 4x, (E 153 id)x = 1. (11) 

then H, defined by [ 161 

A, = x(A )x-l, Ex =E, R, = x2$-l, s, = U(S@, (12) 

where U = x (‘)SX(~), is again a quasitriangular Hopf algebra. The cohomological termi- 
nology in this context is justified in [40]. This specialisation of Drinfeld’s ideas was studied 
in [41], and using the formula for AU given there, it is easy to see that if H is a Hopf 
*-algebra and (S @ S)(x*@*) = ~21 then 

*x = (PU)(( )*)s-tU-’ (13) 

makes H, into a Hopf *-algebra as well. We will see this in more detail in the course of 
a proof in Section 2. The purpose of [41] was to consider how the corresponding braided 
groups constructed from H, H, by transmutation [39] are related. We will consider the 
adjoint of this question, namely a twisting theory of braided groups such that their bosoni- 
sations are related by quantum group twisting as above. We also consider how * interacts 
with the bosonisation construction. 

The abstract sections (Sections 2 and 4) in the paper work over a general field or (with 
suitable care) a commutative ring for purely algebraic results, and over @ when we dis- 
cuss *. The specific examples in Section 3 based on quantum enveloping algebras work 
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over formal powerseries Q[t]] in a deformation parameter whenever we require directly 
the quasitriangular structure R, in the standard way [ 11. (The Hopf algebras themselves, 
their *-structures and their representations do not require this, however, and all work over 
C when we use suitable generators, again in the standard way.) All antipodes and braided 
antipodes are required for convenience to be invertible, which is in any case automatic for 
quasitriangular and dual-quasitriangular Hopf algebras. 

2. *-Structure and twisting of bosonisations 

In this section we refine some of the abstract results on the bosonisation construction [ 151. 
This construction can then be used to define inhomogeneous quantum groups as shown in 
[9], such as q-Poincare quantum groups where the momentum sector is a braided covector 
space (a linear braided group) living in the braided category of q-Lorentz corepresentations 
(i.e., it is q-Lorentz covariant). Bosonisation consists of adjoining the q-Lorentz sector as a 
particular semidirect product. Another example of bosonisation is for a super-Hopf algebra 
in the category of super-vector spaces generated by a certain quantum group Z;. This is like 
the Jordan-Wigner transform which consists in adjoining a degree operator and thereby 
rendering a fermionic or super system into a bosonic one. These two settings, Lorentz 
covariance and super symmetry, are mathematically unified as cases of one construction. 
As well as the Poincare quantum group, other interesting applications are to super symmetry 
142,431 and to the theory of differential calculus on quantum groups [44,45]. For the moment 
we proceed quite generally. 

Firstly, it should be perfectly clear that the bosonisation and cobosonisation constructions 
(9) and (10) are conceptually dual to one another. The bosonisation in [ 151 was constructed 
diagrammatically by a braided group semidirect product construction to give a certain 
braided Hopf algebra. The Hopf algebra BX H contains H and is arranged so that trans- 
mutation from this inclusion [46] reconstructs this braided-Hopf algebra. This step is also 
diagrammatic. By turning all diagrams up-side-down one gets the dual construction which 
gives ( 10). We make a braided semidirect coproduct and use the dual transmutation theory in 
[35,36]. On the other hand, since not all readers will be comfortable with the diagrammatic 
theory, we check the duality now quite explicitly. Once we have the relevant formulae in 
detail, we concentrate with just the bosonisation (9), leaving the corresponding dual results 
for the cobosonisation as an easy exercise. 

To this end, suppose that H, A are dually paired quantum groups as in (2) with corre- 
sponding quasitriangular and dual-quasitriangular structure. Let B be a braided group in 
the category of H-modules and C a braided group in the category of A-comodules, which 
when viewed in the category of H-modules is dually paired to B as in (5). 

Lemma 2.1. With A, H and B, C dually paired as stated, the two ordinary Hopf algebras 
Bx H and A K C are dually paired. Between the various subalgebras the pairing is 
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(b, a) = E(b>C(U), (h, a) = usual, 

(b, c) = ev (J-‘b, c), (h, c) = c(h)e(c) 

forallaEA,hEH,bEB,cEC. 

ProoJ The pairing between subalgebras extends uniquely by conditions (2) to the pairing 

(bh, UC) = (R-‘2’h~l,, a)ev (S-lb, R-(‘)h(2) D c) (14) 

between general elements. We check that this is indeed a pairing. We write (b, c) = 
ev (J-lb, c) and need only properties (6) mentioned in Section 1.1, so in fact this lemma 
works if we suppose ( , ) directly without neo:ssarily supposing 2-l. We denote further 
distinct copies of R by R’, etc., and consider general b, d E B, h, g E H, a E A and c E C. 
Then 

(bh @ dg, A(ac)) 

= (bh, a(l)c@)(dg, a~2~q,~“‘q2~) - - - 

= (R-‘2’hcl,, a(lJ)(R’-(2)g(,j, a(2)c#)(b, R-“‘h(2, D c(1) (0) 
- - 

x (d, @-(‘)g(2) D c(2)) - 

= (R-‘2’h~3~R’-‘2’(,)go, a)(b, R-‘1’h~4,R’-‘2’(2,g(2, D C(I)) - 

x (h(l) D d, h~2$‘-(‘)g(3) D c(2)) - 

= (R’-‘2’h~2)g(+ a)@, R-‘2’R’-“)(l~hg)g(2) D c(l)) - 

x (h(l) D d, R -‘1’R’-‘*‘(2~h~4)g(3) p c(2)) - 

= (R’-(2)h~z)gC,), a)@, 62) D (R’-(‘)h~qg(2) D C)(I)) - 

x (h(l) Dd, R -(I) D (R’-(‘)hgjg(2) D c)(2)) 

= W(2)h~2jg(,j, u)Wql) D 4, R-(‘)hcm2) D c) 

= @(h(l) D Wqsg, UC) = Wig, UC), 

where the first equality is the coproduct from (lo), the second evaluates (14), the third uses 
the Hopf algebra pairing (2) and also writes evaluation of the coaction of c(t) as a further 
action on it. At the same time we insert an extra h(l) acting on d, and h&on the other 
input of ( , ), knowing that this is trivial since ev and ( , ) between the braided groups are 
H-invariant. For the fourth equality we use (h(2) 8 hg))R’ = R’(h(3) 63 h(2)) and then 
the cocycle properties of R from the axioms of a quasitriangular Hopf algebra. The fifth 
equality is the covariance of the braided coproduct of C. Finally, we use the braided group 
duality in the form (6) and recognise the result as the product from (9). This is half of the 
lemma. For the other half, we verify on b E B, h E H, a, d E A and c, e E C, 



S. Majid/Journal of Geometry and Physics 22 (19%‘) 14-58 

(A(bh), UC @de) 

= (b~‘j7??)h~‘j, 4((V) b 42)Vq2), de) - 

= (R’-‘2’R-(2’(,,h(‘,, a)(R”-(2)h(3), d)(b(‘,, 7?-“‘R-‘2’(2,h(2, D C) 

x (b(2), R -mR”-(‘)h(4) D e) 
- 

23 

= (@2’h(,,, a)(h(qR”-(*), d)(b(‘,, 72-‘*‘R-“‘,‘,h(2) D C) - 

x (b(2), R’_(‘)R_(‘)(2)h(3)R”~(‘) De) - 

= (R-‘*‘h(,,, LZ)(~(+R”-(~), d)(b, (R-(‘)(‘)h(2) D C)(R-(‘)(2)h(3)R”-(‘) D e)) 

= (7e)(,$q,), a)(R-(2)(2)h(2)R(2), d) 

X (b, (R-(‘)(,)h(#‘) D c)(77-(')(2$(4) De>) 

= (~-'*'h~',,ad~'))(~'*',d(2))(b,~-"'h~2) D ((R"' D c)e)) 

= (bh,ad~')c(')e)R(c(2) 63 42)) = (bh,acde), 

where the first equality is the coproduct from (9), the second evaluates (14) and also moves 
R(” acting on b(2) to (SR(‘)) (which becomes R-(l)) acting on the other input of the 
braided group pairing (by its H-invariance). The third equality uses the cocycle property of 
R-’ coming from the axioms of a quasitriangular Hopf algebra, and also moves h(3) @h(4) 
to the left of ‘R” as h(4) 18 h(3) using these axioms. The fourth equality uses the braided 
group duality (6). The fifth equality uses the cocycle and other quasitriangularity axioms for 
R again. The sixth uses the usual duality (2) and covariance of the braided group product. 
We then use (10) to recognise the result. cl 

Lemma 2.1 reworks [25] where the duality was given explicitly when C = B* rather 
than B = C* as it is here: Both statements are true. The astute reader will note also that if 
these constructions are dual and both A and H are sub-Hopf algebras then both A, H are 
also projected onto. Thus both, A K C and Bx H are Hopf algebras with projection in 
the sense of Radford [47]. This observation is due to the author in [20]. 

Lemma 2. I is useful when making explicit dualisations between the comodule and module 
setting. For example, the coproduct in (10) can obviously be considered as a coaction of 
A D< C on C from the right. It is how the quantum Poincare function algebras in [9] coact 
on the space-time co-ordinate algebra. Dualising means that in the setting above, Bx H 
acts on the space-time co-ordinate algebra. 

Corollary 2.2. In the setting of Lemma 2.1, C is a left B x H-module algebra by 

h D c = #(h cc’)) 
1 3 

b t> c = RpC2) t> c(l)ev (J-‘b, R-(l) D c(2)) (15) - - 

j?w h E H, b E B and c E C. We call this the fundamental representation of the bosonised 
Hopf algebra 
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Fig. 1. Proof that the action of B on C in Corolla_ry 2.2 (in box) is (a) an action and (b) braided covariant. 

Proo$ Conceptually, the action of H on C is just the action corresponding to the coaction of 
A assumed when we said that B was A-covariant to begin with. The action of B in abstract 
terms is 

br>c = (ev(S-‘b, ( )) 8 id) o ly-’ o&c, (16) 

which has a diagrammatic picture when we write @ as a braid crossing and ev = U. This 
is shown in the box in Fig. 1, where we check that it indeed makes C a braided-module 
algebra under its dual B. Part (a) checks that it is an action, using coassociativity of the 
braided coproduct of C, dualising it to a product of B and the anti-algebra homomorphism 
property of 3-t proven in [ 171. Part (b) checks that we have a braided B-module algebra in 
the sense of [ 15,171, using the braided bialgebra axiom for C, dualising one of its products 
to a coproduct of B, and the anti-coalgebra homomorphism property of 3-l. The role of 
ev 02 -t can be played directly by a braided group duality pairing of the type (6) if we 
prefer. The l-l correspondence of representations in bosonisation theory then means that 
C becomes an ordinary module algebra under the bosonisation of B when we adjoin H. 

One gets the same answer with more work by explicitly evaluating against the coproduct 
of A K C viewed as a coaction, via the duality pairing from Lemma 2.1. 0 

If B is a braided group then its naive opposite coproduct @-’ o 4 makes the algebra 
of B into a braided group B coP living not in our original braided category but rather in 
the ‘conjugate’ braided category with inverse braiding [17, Lemma 4.61. 2-l becomes 
its braided antipode. In concrete terms it means that the braided group Bcop is no longer 
properly covariant under H (with the correct induced braiding) but under this quantum group 
equipped with R,, -’ instead for its universal R-matrix. Let us denote the latter by H. As a 
Hopf algebra it coincides with H, but has ‘conjugate’ R. So we can apply our bosonisation 
theorem (10) and obtain at once a new Hopf algebra BCoPx I? with coproduct and antipode 
A, 3 say. As an algebra it coincides with Bx H so d is a second ‘conjugate’ Hopf algebra 
structure in this same algebra. 
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Proposition 2.3. Let B>a H be the bosonisation of a braided group B. The second ‘con- 
jugate’ coproduct and antipode on the same algebra is 

db = R-(‘)bC2) @ R- (2) D b(l,, Sb = (R’2’v-’ D S-‘b)R”’ - (17) 

where v = R(‘)SRC2), and is twisting equivalent to (Bx H)“P by quantum 2-cocycle 
R-1. 

ProojI We compute from (9) for our new braided group Bcop with opposite coproduct 
V’ o Ab = R-(l) D b(2) C3 RpC2) D b(1) and qua ntum group 3 with quasitriangular - - 
structure R;,’ . Then (9) gives bosonised coproduct 

db = (R- (‘) D b&R’-“’ @3 (@-(2’R-‘2’) D bClj 
- - 

= (R-(‘+,j D bC2))R-(1+21 @ R-(2) D bC1, - 

using one of the axioms of a quasitriangular structure. We recognise the result as stated in 
the proposition when we use the product (9) in BM H. The antipode is likewise computed 
from (9) for our new braided group BcOP, which has braided antipode 3-l [ 171. We can also 
compute d further as 

& = @l’R’-‘1’R”‘b~2, @ (7+2’ D b~l,)R’P’2’R’2’ 

= R-%(‘)bC2) @ (;-‘2’,l, r> bCl,)R-‘2)C21R(2i - 
= R-(‘)R(‘)b(;?, @ R-‘2’bC,,R’2’ - - 
= R-(‘)(@)(I) D bC2))R(‘)C21 @ R-‘2’bCl,R’2’ - 

= R-(‘)(R(‘) D b&R’(‘) 8 R-‘2’bCl)R z ‘(2) R , - - 

which we recognise as R-l (r o Ab)R in view of the coproduct from (9). The first equality 
inserts R-‘R into our previous result for db. The second uses quasitriangularity of H, 
the third uses the relations in (9) on the right-hand factor. We then use relations (9) on 
the left-hand factor for the fourth equality and quasitriangularity again for the fifth. Note 
that dh = Ah since H is a sub-Hopf algebra, which also equals R-‘(r o Ah)R by 
quasitriangularity. The quasitriangularity axioms imply that R-’ is a 2-cocycle for Hcop 
in the sense of (1 1), but since H is a sub-Hopf algebra of Bx H, we can also view it as 
a 2-cocycle for (B>a H) c0P We see that the second ‘conjugate’ Hopf algebra structure on 
B% H is the twisting of (Bx H) c0P b y this cocycle. The antipodes are also twisted one 
into the other, since they are determined by the coproducts. 0 

Both the twisting and the ‘conjugate’ point of view on this second coproduct are useful. 

Corollary 2.4. In the dual pairing setting of Lemma 2.1, C is a module-algebra under 
B x H with its second ‘conjugate’ Hopf algebra structure, via 

h& = $)(h ,@)) 
3 7 bt>c = ev (b, C(I))CQ) (18) -- 
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for h E H, b E B and c E C. Moreover this conjugate fundamental representation is iso- 
morphic to the representation in Corollary 2.2 via the braided antipode of C as intertwiner, 

2(x&) = x D SC, ‘i’x E B>a H. 

Proof We deduce this without computation via ‘braid’ crossing reversal symmetry’, by 
applying Corollary 2.2 to Bcop in the category with inverse braiding. The role of C is 
now played by Cop with opposite product . o PI-‘. The braided antipode of C is [ 171 an 
isomorphism S : Cop -+ Ccov of braided groups and we use this now to refer our action - 
to CcoP. Then (16) uses the opposite coproduct to the coproduct 9-t o 4 which (in our 
category with reversed braiding) is 9 o V’ o 4 = a. S-’ in (16) becomes the inverse 2 
of the antipode of B and is absorbed in the above isomorphism. In fact, the resulting action 
is exactly the left-translation used in defining braided differentiation in [22], and we know 
directly from there that it makes C a braided B CoP-module algebra in the category with 
reversed braiding (it has the inverse braiding in its Leibniz rule). It then bosonises to an 
action of B >4 H by adjoining the action of H. Moreover, we can apply a further S to CcoP 
and then our action of B becomes on its image the representation in Corollary 2.2. Thus 

C C 

using (7). The action of H in the two cases is the same, namely the one by which C lives 
in the category of H-modules, and 2 already intertwines this part of the action because all 
braided group maps are morphisms in the category. 0 

Next we suppose that H is a Hopf *-algebra and B is a *-braided group, and that H acts 
on B ‘unitarily’ in the standard sense 

(h D b)* = (Sh)* D b*. (19) 

Then the usual theory of Hopf algebra semidirect products ensures that Bx H is a *- 
algebra. See [25], where this question was considered specifically for bosonisations. So 
B x H is certainly a *-algebra. 

Lemma 2.5. If H is a real-quasitriangular Hopf *-algebra and acts unitarily in the sense 
(19) on a *-braidedgroup B in its category of representations, then * intertwines the original 
coproduct A of Bx H and A, i.e. (* @ *) o A o * = A. Likewise, * o S o x = 3-l. 

Proof We compute 

(* @ *) o Ab = R(2)*b(l)* @3 (R”’ D b(2))* - 
= R-(‘)b(,)* @3 R-‘*’ D (b(*)*) = A(b*), - - 
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where the second equality is our reality and unitarity assumption and the third is the *-axiom 
(3) for braided groups. The mapping over of the antipodes under * as stated is then uniquely 
determined by the mapping over of the coproducts. 0 

Note that the content here is not that (* QD *) o A o * defines a Hopf algebra (it is just 
the Hopf algebra with opposite product, mapped over by *) but that it coincides with d 
constructed by the ‘conjugate’ bosonisation. This manifests the deep connection between * 
and braiding in the sense of a combined conjugation-braid reversal symmetry. Lemma 2.5 
also tells us what kind of properties for * to expect for quantum groups Bx H obtained 
by bosonisation. We see that the coproducts A and d coincide on the quantum group part 
H, where they are both its usual coproduct. But on the braided group part B they are more 
like opposite (transposed) coproducts and indeed become that when R = I. This is how 
our hybrid quantum group interpolates between axioms (4) for a braided group (with a 
transposition r) and (3) for a usual quantum group (without t). Putting this together with 
the twisting characterisation of 2 above, we are motivated to define the following. 

Definition 2.6. A quasi-* Hopf algebra is a Hopf algebra which is a *-algebra such that 

(*C3*)oAo*=R-‘(~on)R, E( )=to*, 

(id C3 A)R = R13R12, (A Q9 id)R = Rt3R23. R *@* _ - Rzt 

for an invertible element R of H @ H. 

We will study such objects further in Section 4. One can also consider something more 
general where R is a cocycle rather than like a quasitriangular structure. The above defini- 
tion is stronger but is the one that applies to our bosonisations. From Proposition 2.3 and 
Lemma 2.5 we have clearly: 

Corollary 2.7. If B is a *-braided group acted upon unitarily as in (19) by a real- 
quasitriangular *-quantum group H, then its bosonisation B ~cl H is a quasi-* Hopfalgebra 
with B, H as sub *-algebras. 

Finally, we prove a related and somewhat harder theorem which we will also use in 
a later section (as a quantum Wick rotation between Euclidean and Minkowski-Poincart 
groups.) Namely, we consider how the bosonisation construction responds to twisting under 
a cocycle. It is clear that if B is an H-module algebra (an algebra in the category of H- 
modules) and we twist H by a 2-cocycle x as in (12) then we must also ‘twist’ the algebra of 
B in a certain way if we want it to remain covariant. Likewise, if we have a coalgebra in the 
category then we have to ‘twist’ that too if we want to stay in the category of H-modules. 

Theorem 2.8. Zf B is a braided group in the category of H-modules, and x a 2-cocyclefor 
H, then B, dejined by 

b. xc=.ox -‘D(b@c), &b=xD&b, c, = c. 3, =s (20) 
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is a braided group in the category of H, -modules. If B is only a braided-(bi)algebra then 
so is B,. 

Proo_f: As explained in [28], for example, we know that if B is a (co)algebra covariant 
under H then B, is a (co)algebra covariant under Hx . We have to check that this twisted 
algebra and coalgebra still fit together to form a braided group in the braided category of 
H, -modules. Thus 

= &(X-(l) D b)(X-(2) D C)) 

=X (l)D ((X- _ (‘) D b)(l)R (2) D (x-(2) DC)(])) - 

@X (2) D ((@‘) D (x-“’ D b)C2j)(X-(2) DC)(2)) - - 

= (xyl)x-(l) (1) D ~~l~)(x~1~~2,~~2~x-~2~~l~ DC(l)) - - 

63 (x(2)(,$(1)x-(1)(2j D b~2))(x’2’(2)x-‘2’(2) D C(2)), - - 

G&b) .x (A,C) 

= (x-(1)x(1) p b(l))(x-(2)Rx(2)x’(1) D C(I)) 
- - 

@ (x ‘--(1)RX(1)x(2) D bC2j)(X’-(2)X’(2) DC?(~)), - - 

using the definitions of the product and coproduct of B, . In the second equality we use that 
B itself is a braided group in the category with braiding defined via R, and for the third 
we use covariance of its product under H. We seek equality for all b, c E B with the lower 
expression, which is the braided tensor product of 4, applied to b, c in the category with 
braiding defined by Rx = X21 RX -‘. Equality holds in view of the identity 

((A @ A)X)%AHCSHX-’ = xl~1X~4’X23R32x~~1x13X24~ 

which follows from repeated use of the cocycle condition (11) and the quasitriangularity 
of R. It is clear that the unit and counit are not affected by the twisting. Hence we have a 
braided bialgebra B, . If B has a braided antipode then it is clear that the same map provides 
a braided antipode for B,. This is because X acts when making the coproduct of B, and 

X -’ acts when making the product, and 2 is an intertwiner for the action, so that X-l, x 
cancel. 0 

Theorem 2.8 fits together with the twisting (12) of quantum groups to tell us that the 
process of twisting and the process of bosonisation commute. In categorical terms the reason 
is that the category of H, -covariant representations of B, is equivalent to the category of 
H-covariant representations of B, the equivalence respecting tensor products up to X. But 
the first category is isomorphic to the category of B, ~cl H, -modules and the second to that 
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of B >cl H-modules. These are therefore equivalent up to x . This means by Tannaka-Krein 
arguments [ 131 that these two bosonisations are twisting-equivalent as Hopf algebras. 

Proposition 2.9. In the setting of Theorem 2.8, we have 

Bxx H, 2 (Bx H),, 

where on the right-hand side we view x as a 2-cocycle for B x H, i.e., the bosonisation of 
the twisted braided group is the twisted quantum group of its bosonisation. 

ProofI The categorical argument sketched makes this a corollary of Theorem 2.8. Here we 
show directly that the required isomorphism is provided by 8 : (B>a H), --f B, x H, , 
where B(bh) = (x(‘)r>b)x(*)h. This is the identity on the H, sub-Hopf algebra, as it should 
be since both sides contain this. In addition 

e(bc) = (x (I) D (bc))x (*) = (X”+‘, D b)(x”‘C2j D C)X 0.) 

= (x’(‘)X(‘) D b)(X1(*)X,‘(‘)X(*)(,) D C)x”(*)x(2)c2j 

= (xc’) D b) .x (x”(‘)x(*)(,j D C)x”(2)x(2)(2j 

= (xc’) D b)x(*)(x’(‘) D c)x’(*) = O(b)O(c), 

where we use the H-covariance of B for the second equality, the 2-cocycle condition (11) 
for x for the third, the definition of the product of B, for the fourth, and finally the cross 
relations in B, x H, from (9). We also verify the cross relations as 

B(h)O(b) = h(x(‘) D b)x’*’ = (,$‘)h~‘) D b)x(*)h(z) = B(h(‘) D b)O(h(z)), 

where we use the relations in B, >*I H, again. Hence 8 is an algebra homomorphism 
For the coproduct of B, M H, we compute from (9) 

A(O(b)) = (x’(l) D (xc’) D b),,,)R,‘2’~“(“~‘2)~,~~-(” - 

@ (R, (‘)x1(*) D (x”’ D b)(*))x N3 x (2) (2)x 42) 
- 

= (x’(l)X(I)C,j Db~,,)R,‘2’X”(I)X(2)(‘)X-(‘) 

8 (~,(‘!X~(*)x~+2~ D b~2))x”(2)X(2)(2)X-(2) 
- 

x((6@8)oAb)x-’ = xf(‘)(x(‘) D bc,,)X’2’R(2)X’--(‘) 
- 

63 p2’(x “(‘)R(‘) [> bc2J)X”(2)X’-(2) 
- 

= (x(‘)x’(‘)c,j Db~‘,)x’2’X’(‘)(2~R(2)X-(1) 
- 

8 (X’r(1)X’(2)c,9,(1) D b~2~)x”(2)X’(2)~2~X-(2), 
- 

where we used the twisted braided coproduct of B, and the twisted quasitriangular structure 
of H, for the first equality, and H-covariance of the braided coproduct of B for the second. 
We seek equality with the lower expression, computed using the relations of BX >cl H, 
obtained from (9). Equality holds for all b E B in view of the identity 

~23R32~32~~,3~24(A~~“x) = X12X34((A @ A)X)R32 
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as in the proof of Theorem 2.8. That the unit and counit map over correctly is immediate, 
after which it follows that the antipodes also map over. Hence 0 is an isomorphism of Hopf 
algebras. 0 

We will use this in Section 3.2. For completeness, we also discuss the interaction of * 
with twisting. 

Proposition 2.10. If H is a Hopf *-algebra and x is a 2-cocycle for it which is real in the 
sense (S @ S)(x*@*) = ~21, then: 

(i) H, is a Hopf *-algebra. If H is (anti) real-quasitriangular then so is H,. 
(ii) Zf B is a *-braided-group in the category of H-modules with H real-quasitriangular 

and the action ‘unitary’ in the sense (19), then B, is a *-braided group in the category 
of H, -modules. 

(iii) In this case, B, x H, is a quasi-* Hopf algebra by Corollary 2.7. The required *- 
structures on H, and B,, respectively, are 

*x(h) = (S-‘U)h*S-‘U-‘, *x (6) = (S-l U)S-2U-’ D b* 

Proof The first part belongs to the theory of twisting of quantum groups, mentioned in 
Section 1.1. Since it does not seem to be discussed previously, we include a proof. From the 
stated ‘reality’ assumption for x we see that U* = S-‘U and hence that S-’ U is real. This 
implies that (*x)2 = id, making H, into a *-algebra. Moreover, from the form of S, in (12) 
we see that S, o *x(h) = U(S((S-‘U)h*S-‘U-‘))U-’ = S(h*) so that (S, o *x)2 = id 
as required. More non-trivial is the coproduct. However, it was shown in [41, Lemma 2.21 
that 

AU-’ = (S c3 S)(xz,)(U-I @ U-‘)x (21) 

from which weconclude that A(S-‘U-l) = x *@*(S-‘U-‘@,!-‘U1)x underourreality 
assumption for x. This implies at once 

(ex @ ex)(A,h) = (S-lU)x-(l)*h* (,)x(l)*s-‘U-’ 

@,(S-‘U)x-(2)*h*(2)x(2)*g-1U-l 

= x(‘)(S-‘U)(,~h*~l)(S-‘U-l)cl)x-(l) 

%I x(2)(S-‘U)(2~h*(2)(S-‘U-‘)(2)x-(2) 

=A, o*x(h) 

as required. Finally, we check that if H is real-quasitriangular, then 

(*x @ *x)(RK) = (S_‘U @ S-‘U)x-l*~*R21x2*~(S-‘U-l @ s-‘u-t) 

= x(AS-‘U)Q(t o AS-‘U-‘)X~;~ = (Rx)21 

using the result on AS-‘U-l and the quasitriangularity assumption. Similarly if R is 
anti-real. 
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For the second part, we suppose B is a *-algebra in the category of modules of a Hopf 
*-algebra H, and that the latter acts as in (19). We define *X on B as stated. Then (*X)2(b) = 
(S-‘u)S-2u-1 D ((s-1u)s-2u-1 D ,*)* = b as required, using (19). Moreover, if we 
write for brevity y E (S-1U)S-2U-1 then our key property (21) tells us that 

AY = x-l (v @ v)(S-~ @ S-2)(x). (22) 

Then when we consider the algebra B, with the twisted product ‘X as in Theorem 2.8, we 
will have 

*x((b ‘x c)) = y D ((x-‘2’ D c)*(x-(‘) b b)*) 

= (Y(l)GX -(29* D c*)(Y(2)(sx -(I))* D b*) 

L (X-(I$, ,, C*)(X-(*I Y b b*) = (*x (c)) ‘x (*x(b)) 

using our reality assumption on x and (22). Hence B, is a *-algebra under *x. Likewise, 
suppose that B is an anti-*-coalgebra in the sense of the coproduct axiom in (4) and the 
action, and covariant under the Hopf *-algebra H as before. Then the twisted coproduct 
Ax as in Theorem 2.8 obeys 

(*x @ *x)Ax(b) = y D (x(l) D b(t))* @ y b (xc2’ D b(z))* - 

= y(Sx(“)* D b*(2) C?$ y(s~‘~‘)* D b*(,) - - 

= x(2$(2) b b*(z) @ x(‘)y(,) D b*(l) = T 0 Ax 0 *x(b) - - 

as required. 
So in particular, if B is a *-braided group then so is B,. Moreover we know from 

Theorem 2.8 that H, acts on it. We check that its action obeys condition (19). Thus 

*,(h D b) = y(Sh)* D b* = S-‘(U-‘(S-‘U)h*(S-‘U-‘)U) D *x(b) 

= SK’ (*x (h)) b *x (b) 

as required. Since we have also seen that H, is real-quasitriangular when H is, we are in 
the situation of Corollary 2.7 and conclude that the bosonisation B, >cl H, is a quasi-* 
Hopf algebra for the *-structures as stated. It is related to Bx H by a theory of twisting 
of quasi-* Hopf algebras. cl 

3. Poincark quantum enveloping algebras of braided linear spaces 

In this section we specialise our preceding results to the case where B is a braided vector 
space V( R’, R) as introduced in [9]. The data are two matrices R’, R E M,, 63 M,, obeying 
the equations 

R;,Rt3Rz = R23R23R’,2, RER~~R;~ = R;,RtsRtz, 
Rt2RtsR23 = RzsRt3Rtz. (PR + l)(PR’ - 1) = 0, (23) 
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where P is the usual permutation matrix. Then V is defined with generators p = [p’ } and 
the relations ptp2 = R’pg11, which is not the usual Zamolodchikov or exchange algebra 
since we do not assume that R’ obeys the QYBE (though it often does in practice). Rather, 
the QYBE applies to R, which we use in defining the braiding @y@t @p2) = Rp2 8~1. We 
take braided coproduct AJ = p 8 I+ 1 Bp. This can be expressed as the addition of braided 
co-cordinates, see [9,22] where the construction was introduced and applied, respectively. 

We assume further that the matrix R is regular in the sense [21] that we can build from 
the usual quantum matrix bialgebra A(hR) [32] a quantum group A by adding further 
relations, such that the canonical (dual) quasitriangular structure on A(h R) introduced in 
[13] descends to A. Here h is a constant which does not enter into the relations of A(hR) 
but does affect its dual-quasitriangular structure. It is the quantum group normalisation 
constunt introduced in this way in [21]. We also make a covariance assumption [9] that the 
matrix R’ is compatible with the quantum group A in the sense R’trt2 = t2tl R’. This is 
generally true, for example if P R’ is a function of P R. 

Finally, we assume that there is a quasitriangular Hopf algebra H dually paired with A. 
In this case, define the H-valued matrices 

Z+ = (id at, R), I- = (t@id,R-I), (24) 

which necessarily obey (among other relations) the quadratic relations in [32]. We assume 
that the elements of these matrices generate H at least over formal powerseries in a deforma- 
tion parameter. All the above conditions are satisfied of course for the standard deformations 
U,(g) associated to a complex semisimple Lie algebra, but it is necessary for us not to be 
tied to this case to cover other interesting examples as well. This method to obtain I’ from 
‘R was used [48] for U, (su3). 

This describes all the data for the bosonisation construction, in R-matrix form. The 
Poincare enveloping algebras were then constructed under these assumptions in [9] by 
bosonisation (9), as well as the their dual quantum groups (which we do not discuss ex- 
plicitly) by cobosonisation (10). To H we have to add a central primitive generator 6 with 
quasitriangular structure h-c@ which we multiply into the quasitriangular structure R of H 
above. This is the quantum group Z? which we actually use. The braided vectors V(R’, R) 
live in its category of modules by the action 

1; r>p2 = h-‘R,‘p2, 1; Dp2 = W2, he r>p = h-‘p. (25) 

In [9] we emphasised the right coaction of the dilatonic extension of A (the pi transform 
as a quantum vector); the above is nothing more than an evaluation of I*, < against that 
coaction. The inhomogeneous quantum group V (R’, R) ZQ I? of the braided linear space is 
then constructed from (9) as generated by p, I*, c and with cross relations, coproduct and 
antipode [9] 

1;p2 = h-‘R;tp&, l;p2 = hRp21,, h$ = h-‘pkc, 
Ap =p @ 1 + AFL- @p, cp = 0, Sp = -h-c(SI-)p. (26) 

It should be clear from [9] that the reason why there is only I- and not If in Ap is that 
we used R and not I?,,, -’ in (9). 
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Proposition 3.1. The Hopf algebra V (R’, R) x I? in the setting above has a second ‘con- 
jugate’ coproduct and antipode from Proposition 2.3, namely 

np =p 63 1 + x51+ @p, Sp = -G(sz+)p. (27) 

Proof The computation is exactly the same in form as in 191 and follows at once from (24) 
(25) and (17). For example, the ‘conjugate’ coproduct ofp is computed asp @ I + R-(‘) 8 

‘FZc2) DP which yields I+ because the action of 72- (2) is by evaluation against the coaction 
pi -+ paSti,, which we compute from (24) and (id QD S)(R-‘) = R. One may check 
directly that the previous coproduct and the new ‘conjugate’ one are related by conjugation 
by R-l, as they must be from Proposition 2.3. 0 

To proceed further and obtain a quasi-* Hopf algebra, we need to suppose that V( R’, R) 
is a *-braided group. This question was analysed in [8] and there are several possibilities. 
The simplest, which covers q-Euclidean spaces, is to assume that R is of real type I in 
the sense R = RtBt with real quantum group normalisation constant h, and that there is 
a covariant quantum metric nij. The construction of such quantum metrics from braided 
geometry has been covered in [23]. We require a tensor that is quantum group invariant 
and obeys various identities with respect to R, R’ such as to make V(R’. R) isomorphic 
to the braided covectors V’(R’, R) as braided groups in the category generated by R. 
The braided covectors are defined in 191 with generators (pi) where the indices are down, 
and corresponding relations like the above but R’, R acting from the left on the covector 
generators; we require that pi = via pa effects an isomorphism, cf. [26]. One may deduce 
various useful identities, among them (coming from invariance) the identities [24] 

qin R-“jkt = h2Ratktnaj, nkaRijat = K2R-lijakn,t, (28) 

which we particularly need below. We use conventions in which ,]‘j is the inverse transpose 
- 

of 17, and assume further the reality condition qij = qji. Then we can take pi* = Pi as 

explained in [ 81. 
We also need that H is a real-quasitriangular Hopf *-algebra. This will generally follow 

from the other conditions as long as R is of real type. For then the *-structure of A can 
typically be taken in the compact from tij* = St’, as in [lo]. The dual-quasitriangular 
structure of A is then necessarily of real type. 

Proposition 3.2. Under the reality assumption on R and given a quantum metric. the 
inhomogeneous quantum group V (R’, R) 3 fi becomes a quasi-* Hopf algebra with 

l&i .* 
J 

= sl+j,, pi* = pi, t* = -t. (29) 

We regard the pi as linear combinations of the pi, just with ‘lowered indices’. 

Proof The form of * on the pi is from [8]. The form on 1* is the standard one in the case 
of U,(g) but is deduced in our more general setting above from (24) and the reality type 
type of R. This was explained in [25]. We also need that action [25] is ‘unitary’, which is 
easily checked from the reality type of R. Thus 
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(l+ij ,, pk)* = h-1 R-lkbijpb* = ~-1 R-ljibkrlbapa 

= hqkbRjibapn = l-j, [> qkbpb = (Sl+‘j)* D pk* 

and similarly for the action of I-. We use Eqs. (28). We then deduce that we have a quasi-* 
Hopf algebra from Corollary 2.7. 0 

Since the pi are equally good generators in our setting (or if we just want to work with 
lower indices in any case) there is nothing stopping us giving the inhomogeneous quantum 
group relations in lowered-index form. We can proceed from the above, using the metric 
relations (28) or directly by bosonisation of V’(R’, R). The results are the same except for 
a difference in sign oft which can be absorbed by a redefinition. In the first point of view, 
the result is 

P1P2 = ~2~1 RI, 132 = k~p2 R24, 

l;p2 = h-‘p@l;, hCp = r’p$, 

Api = pi 8 1 + h’SI-ai 8 pa, Ep = 0, 

Spi = -~-‘(S21-ai)p 

dpi = pi @ 1 + h-SS~~‘i @ p a* 

Spi = -h’(S21+ai)p a* 

(30) 

where nowp = (pi). 
The above theory includes, for example, the Euclidean group of motions U$ >*I U,&,) 

where UqGn) is a central extension of the standard q-deformed enveloping algebra, which 
we take in FRT from [32] and with Drinfelds’s quasitriangular structure [ 11. The appropriate 
[wz are the quantum planes in [32] for suitable R’. One of the major results in [9] was that 
the Poincare quantum groups obtained in this way automatically (co)act on the space-time 
braided covectors xi. As also explained in [9] and developed fully in its sequel [22], the 
coaction by the braided addition becomes by evaluation an action of the Poincare envelop- 
ing algebra momentum generators pi on space-time by braided differentiation. Since we 
have two coproducts, we obviously have two such actions by differentials and ‘conjugate’ 
differentials. These generate the fundamental and conjugate fundamental representations 
from Corollaries 2.2 and 2.4, and are studied further in Sections 4 and 5. Let us note that 
this Hopf algebra [w: x U,G,) and the q-Euclidean space on which it acts have recently 
been studied by rather more explicit means in [49]. 

3.1. Spinorial q-Euclidean-Poincare’ enveloping algebra 

There are many classes of linear braided groups, much beyond the usual quantum 
planes associated with representations of standard quantum group deformations such as 
If%; x Uq&,). In this section and the next, we specialise to a class in which the generators 
pi above are replaced by a martix of generators p = (pioil ] say. We are still considering 
them as an additive braided group but adopt a notation in whichp refers to a matrix, with 
the usual notational rules. For example, the matrix bialgebras A(R) have such a coaddition 
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[50], as do rectangular quantum matrices A(R : S) in [51], whenever R, S are q-Hecke 
solutions of the QYBE (so that the corresponding braiding has eigenvalues 4, -q-l). 

In particular, we focus here on the ‘rectangular quantum matrix’ algebra A(R) = A (R2 1 : 
R) proposed in the 2 x 2 case as a matrix or ‘twistor’ description of four-dimensional q- 
Euclidean space in [28]. It has relations and braid statistics. 

R21~1~2 = ~2~1 R, P:P~ = RP;?P; R (31) 

under which it forms a braided group with & = p @ 1 + 1 @p as before. Clearly we 
can write p@i, = pt as a covector with multiindex I = (iu, it), and in this way write 
this braided linear space as V’(R’, R) for suitable ‘multiindex’ R', R given in [28]. So the 
difference is purely notational. 

One can then follow the preceding section with the matrices R', R and quantum group 
generators l*‘~ using the setting there. Alternatively, which we do in the present section, 
we can take a slightly different quantum group as the ‘background symmetry’ with re- 
spect to which we bosonise. Namely, we take in the role of H in the preceding section 
a quantum group H @I H, where this time H is a quasitriangular Hopf algebra dual to a 
dual-quasitriangular Hopf algebra A obtained from A (h ‘12R). We take the tensor product 
quasitriangular Hopf algebra structure. This quantum group is related to the one in the 
preceding section by the realisation 

[*I5 = (s-rl*joio),*il j,, (3’3 

where Z* and m’ denote the matrix generators of the two copies of H. It is still the case 
that A(R) lives in the braided category of a dilatonic extension of H @ H, so we construct 
this and proceed directly by bosonisation. This formulation has been explanied in [28] and 
we already know from there that the space-time co-ordinates become a module algebra 
under the space-time rotation. We use the same action on the lowered-index momentum 
generators p/ = RiOi,, regarded now as a matrix, namely [28] 

1; r>p2 = h-‘f2R;‘p2, 1, r>p2 = hti2Rp2 

rn: r>p2 =p9.‘12R2i, ml r>p2 =p2h-tJ2R-‘. (33) 

We add a dilaton 4 as before, with h the quantum group normalisation constant for R, which 
is the square of that for R. 

Proposition 3.3. The inhomogeneous quantum group A(R) >cl (H g H) constructed from 
(9) has cross relations, coproduct and antipode 

17~2 = h-‘f2R;‘p21;, l;p2 = h’f2Rp21;, 

rnTp2 =p2h1J2R21mT, rnrp2 = p2k-1/2 R-‘my, hCp = h-‘phC 
(34) 

Ap =p @ 1 + hF(Z-( >Sm-) @p, ep = 0, 

Sp = -h-SS(Z-( )Sm-)p, 

where I-( )Sm- has a space for the matrix indices ofp to be inserted. The second ‘con- 
jugate’ coproduct and antipode from Proposition 2.3 are 
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Ap =p @ 1 +X61+( )Sm+ @p, Sp = -ktS(Z+( )Sm+)p. (35) 

Prooj The semidirect product (9) gives the cross relations as before. We read them off 
from (33) because of the matrix form of the coproducts of I*, m*. For the coproduct and 
conjugate coproduct we evaluate against the composite R (which is the tensor product of 
one for each copy). The computation follows the same line as in [9] and Proposition 3.1, 
for each copy separately, giving the result. 0 

This has been announced in [ 111. It is dual by Lemma 2.1 to the spinorial Poincare 
enveloping algebra computed in [28]. Next we consider *-structures. One can take various 
*-structures on A(R) (including one as a Hermitian matrix) but we concentrate here on 
‘unitary type’ *-structures defined according to the twisting theory in [28] by having the 
same form as on the generators t of the quantum group A obtained from A(h’/*R). We 
suppose this has the explicit form t’j * = eai tabcbj say, where eij is quantum group invariant 
and eij the transposed inverse. For H @ H, the *-structure we need according to the theory 
in [28] is not quite the tensor product one, but has an extra automorphism by S-* in the 
first copy. We assume as before that H is a real-quasitriangular Hopf algebra dual to A. For 
both these assumptions we assume that R is of real type I in the sense R = RtBt and that 
h’/* is real. 

Proposition 3.4. Under the reality assumption on R and given a suitable E as above, the 
inhomogeneous quantum group 2 (R) >Q H g H becomes a quasi-* Hopf algebra with 

l*ij* = s-lpji, mfij* = sm?ji, pij* = c ,pabeb_i, 
a, 

t* = _c. (36) 

Prooj The quantum group H 63 H is real-quasitriangular since each factor is. The *- 
structure on m’ is as in the preceding section. On the I* we have the extra automorphism 
S-*. We also need action (33) to be unitary in the sense (19). Thus 

(,+ij L> pkl)* = (pka#2Ral’j)* = hl/2RjilaEbkPbcECa = ~-1/2pbcR-ljiCaEbktal 

b cl =meJi D ebkp ,E = Se’(m+‘j*) D pk[*, 

(l+ij D pkl)* = (palh-‘/*R-‘ka’j)* = ~-1/2R-ljiak~bapbc~Cl 

= h’/2RTjiabE a kPb c~l 

= sp21-j j D ebkpbccCCI = S-‘(l+‘j*) D pkl* 

using form+ Eqs. (28) for our invariant tensor E, and a variant of them (proven in the same 
way) for 1+. Here Rrl is the ‘second inverse’ of R-’ and governs the action of SP21- 
deduced from (33). Similarly for the m-, I- case. We then deduce that we have a quasi-* 
Hopf algebra from Corollary 2.7. 0 

We can put general Hecke R-matrices into the above constructions. For the standard su2 
R-matrix we have for the braided linear space the rectangular quantum matrices A& (2) 
which are isomorphic, in this particular case, to usual M, (2). In this way we have com- 
patibility with a previous proposal for a suitable algebra for four-dimensional Euclidean 
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space in [30]. Here /$ (2)~ U, (su~)%U~ (3~2) is a ‘spinorial’ version of the q-deformed 
Euclidean group of motions. 

3.2. Spinorial q-Minkowski-Poincare’ enveloping algebra 

In this section we consider another braided linear space in matrix form p = { piOil ), 
namely the braided matrices B(R) introduced by the author as a multiplicative braided 
group in [3]. The additive braided group structure is due to Meyer [26] and requires that R 
is q-Hecke, which we assume. The relations and additive braid statistics are 

R~IPI RPZ = p2R21~1 R, R-‘P; RP;! = P~R~IP; R (37) 

and we take braided coproduct np = p@ 1 + 1 @p. As before, we can also write piO,, = PI 
as a braided covector space V’(R’, R) for suitable R', R given in [3], [26] respectively. The 
equivalence between the notations is standard after the paper [20]. The algebraic relations 
in (37) are of interest in other contexts too [32,52], as explained in [20]. 

One can then follow the first part of Section 3 with the matrices R', R and quantum group 
generators l*‘~ using the setting there. This approach to the q-Lorentz group is covered 
in Meyer’s paper [26]. Alternatively, which we do, we can follow the ‘spinorial’ point of 
view and take for our background quantum group symmetry the quantum group H H H 
obtained by twisting the quasitriangular Hopf algebra H ~$3 H in the preceding section by 
the quantum 2-cocycle x = R&l as an element of (H c3 H) @2 That is, x is R-’ but with . 
its first component living in the copy of H with generators rn' and its second component 
living in the copy of H with generators Zi. The coproduct, antipode and quasitriangular 
structure are read off from (12). Note that the use of this twisted Hopf algebra to describe the 
Lorentz quantum group is due to the author in [9, Section 41, where we pointed out for the 
first time the isomorphism of previous proposals for the Lorentz quantum group function 
algebra in [29,53] with the dual of the ‘twisted square’ in [52]. It has subsequently been 
reiterated by other authors. The realisation of this quantum group in terms of the vectorial 
picture in the first part of Section 3 is cf. [26] 

l+‘J = (I-m+)“j, ((S~‘m+)(S,-‘l+))jOi,, 

l-‘J = (Z-~-)'lj,((S~'~+)(S~'Z-))joi~, (38) 

where So is the usual ‘matrix inverse’ antipode of H. The two copies of H no longer appear 
as sub-Hopf algebras due to the twisting. It is still the case that B(R) lives in the category 
of representations of a dilatonic extension of HH H, and we bosonise with respect to this. 
The required action on the space-time co-ordinates B(R), which we use now on the lowered 
momentum generators pi = pioil, has already been given in [28]: by the twisting theory 
developed there, we use exactly the same formula (33) on the generators, but extending now 
to our new algebras. We add the dilaton c as before, with i the quantum group normalisation 
constant of R, which is again the square of that of R. 

Proposition 3.5. The inhomogeneous quantum group B(R) >cl (H 6% H) constructedfrom 
(9) has cross relations, coproduct and antipode 
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R21p1 RPZ = ~2R21~1 R, 

1+21,- = h-‘f2R,‘p21,-1T, 

l;p& = ), ‘I2 Rp&l;, 

rnTp& =p&h’f2R21mT, 

rn;p& =p&h-‘/2R-‘m;, 

Gp = A.-‘ph$ 

Ap =p @ 1 + ktl-m+( )(Som-)(Sol-) @p, 

Sp = -h-cSo(m+l-( )(S&)(Som-))p, 

Ep = 0, 

(39) 

where ( ) is a space for the matrix entries of p to be inserted, and So is the usual ma- 
trix antipode in either copy of H. The second ‘conjugate’ coproduct and antipode from 
Proposition 2.3 are 

2p =p 8 1 + hdl+m+( >(Som+>(SoZ-) @p, 

Sp = -h6So(m+Z+( )(S&)($m+))p. (40) 

Proof We compute again from (9). This time we evaluate the coaction p’j + pat,(Ss’,)tbj 
which underlies (33), where S, t are dual to I*, m’, against the twisted quasitriangular struc- 

ture x21%58~x-' , using (24). The computation follows the same line as in Proposition 3.3 
except that we use the matrix coproduct of s, t in the duality pairing (2) to evaluate products 
of R. 0 

This was announced in [ 111. It is dual via Lemma 2.1 to the spinorial Poincare function 
algebra computed in [27]. We are now in a position to say rather more about its structure. 

Proposition 3.6. The quantum group B( R)x ( HG H) is the twisting of the quantum 
group OX (HZH) from Proposition 3.3, by the quantum 2-cocycle x E (H @J H)@’ 
viewed in the latter quantum group. 

Proof We just apply Proposition 2.9. That the algebras are indeed isomorphic is quite easy 
to see explicitly: we identify p in Proposition 3.3 with pl- in Proposition 3.5. That the 
coalgebras are then related by twisting requires rather more work to verify directly. 0 

Thus the two systems based on A(R) and B(R) are algebraically ‘gauge equivalent’ [ 161 
in the sense of twisting of quantum and braided groups, so that which one chosen to work 
with is primarily a matter of convenience like a ‘choice of co-ordinates’. The proposition 
extends this ‘quantum Wick rotation’ from [28] to the level of the associated ‘Poincare 
quantum groups’ in the interpretation there. Next we consider the *-structure. We suppose 
that R is of real type I and h real. A natural * structure was introduced in [25], namely 
the Hermitian one. For HH H we take the dual of the *-structure on the quantum group 
A w A introduced in [9] in our abstract approach to the q-Lorentz group function algebra. 
On matrix generators the latter is sij* = Stji as studied in [29]. 
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Proposition&7. Under the reality assumption on R, the inhomogeneous quantum group 
B( R)x ( HH H) becomes a quasi-* Hopf algebra with 

l+'j* = Sm?ji, mhij* = slFii, pij* = pji, 6* = _+ (41) 

Proo$ The antipode on HH H is the twisted form S(h 18 g) = U(Soh @J &g)U-’ 
from (12) where U = Rzt, and the *-structure likewise has the twisted form (h @ g)* = 
U(g* @ h*)U-’ (this is obvious from [9] as the dual of the *-structure on A DC A there). 
We take on H CQ H the ‘flipped’ *-structure (h r8 g)* = g* @ h*, with respect to which 
our 2-cocycle x is of real-type in the sense needed for ( 13).We also have S,k, I/ = U for 
our particular 2-cocycle. So 1 Iti j * = Som’ji in H @ H twists to HH H by the same 
conjugation factor as for the antipode S, giving the form stated. We also know from 
Proposition 2.10 that the twisted R will be real-quasitriangular since it clearly is so on 
H @3 H before twisting. We check finally that action (33) is unitary in the sense (I 9). Thus 

as required. Similarly for the action of m- and 1 *. We then conclude that we have a quasi-* 
Hopf algebra from Corollary 2.7. 0 

Proposition 3.7 confirms that the present system based on B(R) differs, however, by 
more than just a ‘change of co-ordinates’ from the system based on j(R) from Section 3.1, 
because it has quite a different *-structure: even if we refer both systems to the same algebra 
by untwisting the *-structure in Proposition 3.7, we will not obtain the previous quasi-* 
Hopf algebra in Proposition 3.4. Indeed, it is clear from [9] and from the above proof that 
B(R)>a(HG H)isthetwistingviaProposition2.10ofA(R)>a(H~H)withthe ‘flip’ 
*-structure on H @ H and (since (S~&,U)S~&U-’ = 1) the same Hermitian p, in 
contrast to Section 3.1 where we had essentially a tensor product *-structure on H @ H 
and a ‘unitary’ type *-structure onp. Let us note also that while it may be useful to untwist 
in order to make such comparisons, there are good reasons too to work with the B(R) ‘co- 
ordinates’ most of the time, such as its multiplicative braided group structure [3] and the 
remarkable identification of that with the braided universal enveloping algebra of a braided 
Lie algebra L(R) [54]. 

For the standard su2 R-matrix we obtain the braided marices BM, (2) in [3], isomorphic 
to an algebra proposed as q-Minkowski space in [30] from consideration of the tensor 
product of two quantum plane. Then B M4 (2) >cl ( H & H) is a ‘spinorial’ version of the 
q-deformed Poincart enveloping algebra in four-dimensional q-Minkowski space. Such an 
algebra has been studied in [31] via explicit generators and relations, i.e., the R-matrix form 
above and the results about it are new. The braided matrices BM4 (2) are also isomorphic 
to a degenerate form of the Sklyanin algebra [20] and to the braided enveloping algebra of 
the braided-Lie algebra g2 4 [%I. 
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4. Unitary representations of quasi-* Hopf algebras 

In this section we provide some basic lemmas about quasi-* Hopf algebras and their rep- 
resentations. We examine in detail the notion of tensor products of unitary representations. 
This leads to a general construction for sesquilinear forms or ‘inner products’ such that the 
fundamental and conjugate fundamental representations of our inhomogeneous quantum 
groups are mutually adjoint and hence unitary in our sense. This underpins our remarks 
about the differential representation of q-Poincare quantum groups in the next section. 

Lemma 4.1. If (H, R, *) is a quasi-* Hopf algebra in the sense of Dejinition 2.6 then: 
(i) (E @ id)R = 1 = (id @ e)R, (S C3 id)(R) = R-’ and (S @ S)(R) = R. 

(ii) R obeys the QYBE in H @ H @ H. 
(iii) ‘R is a 2-cocycle for H (or equivalently R-’ is a 2-cocycle for Hcop). 
(iv) * o S o * = u-‘(S)u where I_-’ = R(2)S2R(1) is invertible and Au-’ = (u-’ @ 

u-’ )R*1R. 

Proof These facts are analogous to similar facts for quasitriangular Hopf algebras [ 11 but 
require a little more work, except for (i), for which the proof is unchanged. For (ii) we 
compute 

R13R12 = (id @ A)R = (* 8 A o *)R21 

= (RTi ((id @ t o A)R21)??23)*‘*‘* 

= (7?5317?3,7&,R23)*@*‘* = R32?$2R,3R;; 

which is the QYBE in H @ H %I H after suitable renumbering. From (ii) we deduce (iii) 
at once in view of the existing assumptions for A on R. Part (iv) then follows from part 
(iii) and the theory of twisting of Hopf algebras, cf. [16], at least if S is invertible. We view 
R-’ as a cocycle for H “P and deduce that the twisted coproduct d = R-’ (t o A( ))R 
has an antipode S = U(S-’ )V-’ where U = R-(1)S-1R-(2) = (S2R(‘))R(*) using 
part (i), and (from the twisting theory) this is invertible. We denote U-’ = v, say. But 
clearly * o S-’ o * is also the antipode for d = (* ~3 *) o A o *, hence by uniqueness of 
the antipode we deduce * o S-’ o * = v- ’ (S- ’ ) v. This inverts to the form stated, where 
u = Sv. Finally, we combine (21) from [41] with (i) and the reality condition R*@* = R21 
to deduce r o A v = Ru’ (v @ v)R- ’ = (v @ v)R,‘R-’ . The same form for u follows by 
applying S. cl 

These are some of the most basic features. We denote H with its second ‘conjugate’ 
Hopf algebra structure by H (it is also a quasi-* Hopf algebra, with a different 2-cocycle). 
It is clear that a quasi-* Hopf algebra is quasitriangular ifSit is a usual Hopf *-algebra (in 
which case it is real-quasitriangular), which is ifs H = I?, Unlike usual Hopf *-algebras, 
we do not generally have (S o *)* = id. This map (S o *)2 = S o 3-l remains, however, 
an interesting algebra automorphism and at least in some contexts it is natural to ask that it 
be inner (e.g., if one wants to build a Tannakian category of representations along the lines 
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for algebraic groups in [56]). Part (iv) of Lemma 4.1 in the form 

(S 0 *)2 = &( ))V-’ (42) 

tells us that is inner ifs the automorphism S2 is inner. For our bosonisation examples we 
have: 

Proposition 4.2. 
(i) Let H be a quasitriangular Hopf algebra and a E H invertible and such that Acr = 

(a @a)(R21R)-‘. Then a! induces an automorphism 0, : B + B, 19,(b) = (Y D S’(b) _ 
of any braided group B in the category of H-modules. Here 3 denotes its braided 
antipode and is assumed invertible. 

(ii) The square of the antipode of the bosonisation Hopf algebras B M H is 

S2(b) = &r(b), S2(h) = uhu-’ 

for all b E B, h E H. Here u = (,cFR(~))R(‘) as in [38]. 

ProoJ That 19, is always a braided group automorphism is clear from (7): the p2 from 
the action of S2 is cancelled by the (‘QtR)-’ in the coproduct of cz, which determines 
its action on tensor products. This part is an elementary fact about braided groups. In our 
bosonisation Hopf algebras we compute from (9) that 

S2(b) = S((u72 (‘) D Sb)SR(2)) = (S2’j?‘2’)S(~R(‘) D Sb) _ 
= $2)(u7@)7$)u D &,)Sj@) - = R(2)uR(‘)u~ S2b = &(b), 

where we use the definition of the antipode in BM H, the standard fact that u( )u-’ = S* 
in H and then the relations in (9). ??

Let us note also that many properites of quasi-* Hopf algebras depend only on the feature 
that (* 8 *) o A o * is twisting equivalent to t o A. That is, we can demand only the 2- 
cocycle property (iii) in Lemma 4.1 in place of the more restrictive axioms for (A @I id) R 
and (id @ A)R in Definition 2.6. It is natural to call this a cocycle-* Hopf algebra. Other 
variants are possible as well, subject only to the existence of natural examples. 

Next we consider what should be the right concept of ‘unitary’ representation for a 
quasi-* Hopf algebra. The minimum definition, which is familiar for groups and usual 
*-quantum groups, is a vector space V on which the Hopf algebra is represented, and a 
sesquilinear form ( , )V : V @ V -+ 62 (antilinear in its first input) such that 

(h* D u, u’)v = (u, h D u’)v (43) 

for all u, V’ E V. We do not insist for the moment on conjugation-symmetry, non-degeneracy 
and positivity of the sesquilinear form. While this definition looks innocent enough, the new 
feature of quasi-* Hopf algebras (in contrast to groups and usual *-quantum groups) is that 
such a definition is not naturally closed under tensor product. That is, there appears to be no 
general way to combine ( , )V and ( , )W to define a new sesquilinear form ( , )V@W such that 
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the tensor product representation V @ W obeys the same condition (43). The problem does 
not show up for any one unitary representation but only when we try to define consistently 
the category of all unitaries. We formulate now a more correct notion which is closed under 
tensor product and then explain why it cannot be restricted to unitaries for fundamental 
reasons. 

Definition 4.3. A mutually adjoint pair of representations of a quasi-* Hopf algebra H is 
a vector space V, a sesquilinear form ( , )V : V @ V -+ C and nyo actions D, r> of the Hopf 
algebra, such that 

(h*t>tJ, U’)v = (U, h D L”)v 

for all V, u’ E V and h E H. A morphism between mutually adjoint pairs is a pair of 
intertwiners 4, $ : V -I+ W, one for the r> representations and one for the D representations, 
such that (C#J (u), +(u’))w = (u, v’) V. A quasiunitary representation is an adjoint pair for 
which I> and D are isomorphic representations. 

We recover the previous notion (43) of unitarity as the diagonal case where r> = D. In fact, 
since we do not demand that the sesquilinear form is ‘conjugate symmetric’, a quasiunitary 
representation also leads to a unitary one by absorbing any isomorphism between r>, D into 
the sesquilinear form. The more general setting of adjoint pairs has a natural tensor product. 
We give two (equivalent) descriptions of it. 

Proposition 4.4. Let H be quasi-* Hopf algebra (or more generally, a cocycle-* Hopf 
algebra). Then two mutually adjoint representations V,( , )V and W,( , )W have a tensor 
product 

V 63 w, (u C3l w, u’@ w’)v@v = (R-%u, u’)v(R-(SW, w’)w 

for all u, v’ E V and w, w’ E W, where the action t> of H in the first input extends to tensor 
products with the opposite coproduct. That is, we regard r> as an Hcov-module and D as an 
H-module. The category of adjoint pair representations is monoidal. 

Proo$ If V, W with their sesquilinear forms are two mutually adjoint pairs in the sense of 
Definition 4.2 then 

(h*G(u @ w>, v’ @ w’)vg~w 
= (h*($u ~3 h*($w, u’ @ w’)~~~ 

= ((R-(2)h(,)R(2))*t% @ (R-(‘)h(2#1))*rQw, u’ @ w’)~@~ 

= (h(l)*R -(2)*r>u, u’)v(h(2)*R-(1)*r>w, w’)~ 

= (R-%u, ho) D u’)~(R-(~kw, hC2) D w’)w 

= (u @ w, h D (v c3 w))vg,w 

as required, where we used the definition of ( , )VBW, the action of H in its first input 
using the opposite coproduct, the reality assumption on R in Definition 2.6, the assumption 
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that V, W are adjoint pairs, the usual action of H in its second input and the definition of 
( , )V~W again. Hence the tensor product is also a mutually adjoint pair. We define the tensor 
product of two morphisms to be their usual tensor product as linear maps. This correctly 
connects the corresponding tensor product sesquilinear forms because each morphism (as 
an intertwiner) commutes with the action of R-’ . This makes the tensor product of adjoint 
pairs of representations a functor from two copies to one copy of the category. 

Moreover, this construction is associative by the usual vector space associativity. 
Thus 

This makes the category of adjoint pairs of representations monoidal in the sense 
of [57]. 0 

So even if r> = D for some representations, as we take tensor products of them the 
composite 6, D will begin to diverge when our coproduct is truly non-cocommutative. They 
need not even remain isomorphic. Clearly, one does not see this interesting phenomenon 
for groups or enveloping algebras. For a quasi-* Hopf algebra the opposite coproduct is 
nevertheless twisting equivalent to the conjugate coproduct 6, and since twisting does not 
change the category of representations up to equivalence we can work equivalently with 
the first input of ( , )V living in the category of representations of fi instead. Hence we can 
‘neutralise’ the above appearance of the cocycle in the tensor product of our sesquilinear 
forms provided we put it into a more complicated form for the tensor product of r>. 

Proposition 4.5. Let H be a quasi-* Hopf algebra (or more generally, a cocycle-* Hopf 
algebra). Then two adjoint pairs of representations V, ( , )V and W ( , )W have tensor 
product V @ W, (u @ w, u’ @ w’)v~w = (u, u’)v(w, w’)w where the action in thefirst 
input extends to tensor products using the conjugate coproduct of H. That is, we regard D 
as an fi-module and D as an H-module. 

Proof This is entirely equivalent to Proposition 4.4, and the proof is similar. The extension 
of I> is hD(u @ w) = R-(‘)h(2)R(*)Lu @‘R-(2)h())R(2) D w in terms of the coproduct of H. 
The tensor product representations V @ W are not the same as before but equivalent via the 
morphism R-‘l>, FL!-‘D mapping the adjoint pair on V 63 W as defined in Proposition 4.3 
over to the adjoint pair on V C3 W as defined presently. This provides a monoidal functor 
between the two categories. 0 
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Both these tensor products of mutually adjoint pairs can be useful. To be concrete we 
focus now on the latter formulation since it allows us to keep the usual tensor product of 
our sesquilinear forms. It also makes clear that our problem of r> and D diverging would 
not arise if H were a Hopf *-algebra in the usual sense. We consider now how to construct 
adjoint pairs of representations from actions on *-algebras. If they are also isomorphic then 
we will have a unitary representation after adjusting the sesquilinear form. We begin with 
an elementary lemma which is natural but not quite what we need for our examples from 
bosonisation. After that, we will modify it to accommodate the case of interest. 

Lemma 4.6. Let a *-algebra C be acted upon by a quasi-* Hopf algebra H via an action 
D making it an H-module algebra. Let r> be the conjugate representation making C a fi- 
module algebra such that 

(hr>c)* = (Sh)* D c*, (h D c)* = (Sh)*r>c* 

for all h E H and b, c E C. if 4 : C + @ is a D-invariant linear functional then the 
sesquilinear form 

(b, c)# = $(b*c) 

makes r>, D a mutually adjoint pair in the sense of De$nition 4.3. Moreoven 6 = I$(( )*) 
is r> invariant and (b, c)@ = (c, b)J. 

Proof Firstly, D and either one of the displayed conditions stated determine t> (we give both 
forms to maintain the symmetry; they are equivalent). Then hg& = ((S-l (h*))(S-’ (g*))D 
c*)* = (S-‘(h*) D (gGc)*)* = ht>(gr>c) so we have an action, and 

hr>(bc) = (S-‘(h*) D (c*b*))* = (S-l (h*(l)) D b)*(S-‘(h*(z)) D c*)* 

= (h(i)[>b)(h(+c) 

so we have covariance with respect to dh = h(i) @ h(j). Also, given 4 it is clear that 
H-invariance means 

MS-‘h D b)c) = @(h(z) p ((S-‘hct) D b)c)) 

= @((h(z) D (S-‘h (I) D b))@(3) D c)) = @@(h D c)) (44) 

for all h E H and b, c E C. We will later need to consider this equation also with 4 only 
partially invariant. So (h*Fb, c) = @((h*r>b)*c) = @((Se’h D b*)c) = @(b*(h D c)) = 

(b, h D c) as required, using our definition of G as conjugate to D. The last line of the lemma 
maintains the symmetry between 15, D and follows at once from their mutually conjugate 
relationship as stated. 0 

In the setting of actions on *-algebras, our consideration of pairs of actions I>, D is the 
same as considering either one (since one determines the other). If, on the other hand, I>, D 

are given to us from some other source then the displayed condition in Lemma 4.6 becomes 
a non-trivial constraint that the two actions are mutually conjugate. The lemma generalises 
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standard considerations for unitary actions of Hopf *-algebras to our setting of pairs of 
actions of quasi-* Hopf algebras. If I$ = 6 then the resulting sesquilinear form is conjugate 
symmetric, which is again the usual case. One can then proceed to construct a Hilbert space 
from these data in the standard way. 

Unfortunately, our basic examples such as the fundamental and conjugate fundamental 
representation of the quasi-* Hopf algebras obtained by bosonisation, do not necessarily fit 
into this standard setting and we have to modify it. The variant we need is the following. It 
generally destroys, however, the conjugation-symmetry of the sesquilinear form and hence 
forces us to modify this axiom of Hilbert space theory. 

Lemma 4.7. Let (C, *) be a *-algebra acted upon by a quasi-* Hopf algebra H by actions 
D, rZ as in Lemma 4.6 but now mutually conjugate in the sense (hr>c)* = S(h*) D c* for all 
c E C and h E H. Let 0 : C + C be an algebra automorphism such that 8(h [> c) = 
S-*h D e(c) for all h, c. Then (b, c)$ = ti((O(b*)c) makes i>, D mutually adjoint. The 
conjugate construction has just the same form with 

6 = @(( )*), 8=*oe-1 o*, (c, b); = (b, c)$~~-, . 

ProojI This is a variant of the preceding proposition. We have (h*Gb, c) = @(O((h*r>b)*)c) 
= +(e(Sh D b*)c) = $((S-‘h D e(b*))c) = (b, h D c much as before. For the conjugate ) 
we deduce 8(hr>c) = (s-2h)G8(c) when this is defined as stated. Hence the conjugate 
construction has the same form. 0 

If we had 8 = 8 then we would be able to redefine 0 o * as new *-structure and precisely 
return to the setting of Lemma 4.6. This is, however, not necessarily the case for the examples 
coming from bosonisation of braided groups which interest us here. The origin of the 
problem (already noted in [S]) is that the duality pairing (8) for *-braided groups does 
not preserve the unitarity condition (19) for the action of the background quantum group 
generating the category. Indeed, the natural ‘unitarity’ of the action on the *-braided group 
C dual to B where the action obeys (19), is instead 

(h D c)* = S(h*) D c* (45) 

for c E C and h in the background quantum group. This is clear from invariance of ev and 
computation of ev (h D b, c) = ev (b, (Sh) D c). When the duality pairing is degenerate then 
* is not fully determined by (8) but we nevertheless keep (45) as a reasonable assumption 
compatible with condition (19) which we assumed for the action on B. 

Proposition 4.8. Let Bx H be the quasi-* Hopf algebra constructed as in Corollary 2.7, 
where H is a real-quasitriangular Hopf algebra acting unitarily on h-braided group B. 
Let C be a *-braided group dual to B on which H acts as in (45). The fundamental and 
conjugate fundamental representation from Corollaries 2.2 and 2.4 of B >d H on C are then 
mutually conjugate in the sense of Lemma 4.7: 

(XL%)* = s(X*) D C*, (X D C)* = 3(X*)&* 
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mutually adjoint with respect to the sesquilinear form ( , ), and D, r> with respect to the 
sesquilinear form ( , )L, dejined by 

for all b, c E C. Moreover; (c, b) = (b, c)~ when sL = ] 0 61. 

Proo$ One can verify directly that the first sesquilinear form makes I>, D mutually adjoint. 
We have already done the work however, and deduce it as follows. From the mutual conju- 
gation property in Proposition 4.8 and the assertion in Corollary 2.4 that r>. D are intertwined 
by S, we easily deduce that 

s2(.X DC) = ((A!? 0 *)-2.X) D s2C, &XDC) = ((S 0 *)-2x)&s2C (47) 

for all x E B>a H and c E C. From this, (42), and Proposition 4.2 it is clear that 

&(X D C) = (s-2X) D e,(C), B~(Xt>C) = (s-%)29,(c). (48) 

Hence we have the required automorphism 8 = 8, for Lemma 4.7. By similar considerations 
to those above, we deduce equally well 

&(X DC) = (s2X) D t?,(C), &(xr>c) = (Px)&?u(c) (49) 

for all x E Bx H where 6Ju = * o Bv o *. The latter follows from v* = v, Sv = u 
and (4). This gives the conjugate construction for the sesquilinear form ( , )L obeying 
(h* D b, c)~ = (b, hk)L. Then 

1 &(b*)c = Sb’&(c) = j& b*)S2c = SH,@;‘(b*)c) 

explicitly relates the two constructions as stated. The third expression means that we can 
also write (c, b) = (Se2b, S2c) if we replace 1 on the right by 7. cl 

We have / o f& = s as well in reasonable cases where the left-invariant integration 
is unique up to scale. This achieves the task of making our fundamental and conjugate 
fundamental representations from Corollaries 2.2 and 2.4 mutually adjoint. Since we already 
know that they are equivalent with interwining operator 3, we can absorb this too into the 
sesquilinear form. Then 

(b, c); = 
s 

(VD Sb*)c 

for b, c E C defines a sesquilinearform with respect to which the fundamental representation 
of Bx H in Corollary 2.2 is unitary. In our interpretation as Poincare quantum group 
represented on space-time, it corresponds to building a parity operator into the L2 inner 
product. With respect to such a non-local and non-symmetric sesquilinear form we would 
have a’ self-adjoint (i.e., symmetric) rather than the usual anti-self-adjoint. The sesquilinear 
form in Proposition 4.9 by contrast becomes the usual L2 inner product. 
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As explained above, it is natural in these constructions to consider f3v o * as a possible 
second *-structure on C. It is an antilinear anti-algebra homomorphism but 

(&0*)2 = uvr>s4 (51) 

is not necessarily the identity, though it is in some cases. In the present setting, uv is a 
central element of our quasitriangular Hopf algebra. One could also build in its square root 
when this exists (the so-called ribbon element [37]) in order to reduce the contribution of 
v to e2. Partly in this direction, it is easy to see that if (as in the ribbon case) we have [38] 
a group-like element c inplementing S2 and such that U* = (T then any *-braided group 
(C, *) in the category of H-modules has another *-structure c* = 0-l D c*. Moreover, 
this converts (45) over to the more standard unitarity condition (19). If we use this second 
*-structure then the sesquilinear form in Proposition 4.8 becomes 

(6, c> = s e”(b*k, (52) 

where u = (vu) ‘0 is the ribbon element. This is a purely cosmetic change. 
We conclude this abstract section with an example of the above theory which is some- 

what different from the inhomogeneous quantum groups of primary interest in the present 
paper. Namely, we showed in [20] how to view Drinfeld’s quantum double D(U,(g)) as 
a bosonisation SU, (g)% U, (g), where U, (g) is from [ 1,2] and SU,(g) is its associated 
braided group from [20]. We consider the standard Lie algebra deformations where there is 
an R-matrix form I*, t as in [32] of the quantum group and its dual G,. The dual of BU, (g) 
is the matrix braided group BG, obtained as a corresponding quotient of the braided matri- 
ces B(R) [3]. We take q* = q and the standard compact real form of the quantum groups. 
As a *-algebra BU, (g) coincides with U,(g) and we take matrix generator m = m+Sm- 
forming a *-braided group. The braided coproduct is Am = m @ m and the *-structure is 
the Hermitain one. We refer to [20,25] for full details of this bosonisation. 

Proposition 4.10. The quantum double D(Uq (g)) in the bosonisation form BU,(g)>a 
U,(g) is a quasi-* Hopf algebra by Corollary 2.7. The fundamental and conjugate funda- 
mental representations are 

17’ D u2 = R&R2,, 1, DU2 = Ru2R-‘, 

ml D Ru2 = Ru2R21 R, rnlr>Ruz = R;,‘u~ 

on BG, with matrixgeneratoru. Moreoven 0vo* = 5 is the standard Hermitian *-structure 
on BG, and 

(b,c) = /b’,c= /O(Sb)*c, O(c) = q3)77x(qI)k(4), S2q2,A 

where 1 is the product in BG,. The second expression computes this further in terms of 
b, c E G, and its usual coproduct, antipode, *, dual-quasitriangular structure [28] and 
Haar measure [lo] s. Here we identiJied BG, = G, as coalgebras by transmutation 
[35,36]. 
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Proofi The bosonisation and its *-structure for real 4 is described in detail in [25] (as well 
as for 9 modulus 1, which we do not consider here). The braided group duality pairing 
between B = BU,(g) and C = BG, is also given there, as ev(b, c) = (Sb, c) where the 
right-hand side views b E H = U,(g) and c E G, since they coincide as linear spaces (B 
has a modified coproduct and C a modified product, making them braided groups in the 
category of H-modules by the quantum adjoint and coadjoint action, respectively). Then 
the fundamental representation from Corollary 2.2 is 

b D c = ‘l@’ D c(1) ev (S-lb, R- (‘) b c(2)) = (R’2’, Sq,~)q2~(R(‘) D b, c(3)) 

by a computation similar to that for braided right-invariant vector fields in [54, Proposi- 
tion 6.21. The conjugate fundamental from Corollary 2.4 is just bl>c = ev (b. c(~))cQ) = 
(Sb, c(l))c(z). Putting in the matrix coproduct for the generator t E G, and a standard 
computation from (24) gives the form for these actions as stated. The action of the U,(g) 
part is the same for D and r> and is easily computed [3] by the evaluation of Z* against the 
quantum adjoint coaction. 

Next, the operation * on BG, dual to that on BU,(g) in the sense of (8) comes 
out as 

c* = F3(c*), i.e., e,(C*) = 0-l D C* = (SC)* 

in terms of the usual * and antipode S of G,. Here D is the quantum coadjoint action hence 
it is immediate that O-ID = S2. With rather more work, we may use the formula in [36] 
for the braided antipode 3 of BG, in terms of G, to obtain & = S2 as well. Since S2 
is an automorphism of the quantum group G, it necessarily induces an automorphism of 
the associated BG,. In the same way, 8, = id. We recognise the combination 5 = (S)* 
(which we underline to keep it distinct from the * of G,) as the Hermitian *-braided group 
structure for BG, introduced in [25]. Hence 

(b, c) = &(b*):c = 
s s 

br, 

= 
s 

((~b)*)wdWW~b)*)~~~)((Sb)*)~~~, SC(I)) 

= 
s 

(R(‘) D (Sb)*)c(2j(R(2), SC(I)), 

where the third equality expresses the product : of BG, in terms of G, using the trans- 
mutation formula in [36]. It is useful (but not necessary) to make this conversion because 
the Haar weights for compact quantum groups are already known [lo], in some cases quite 
explicitly. Since the BG, has the same coalgebra, we use the same s. It is a morphism 
C -+ C because it is both left and right invariant on G,. Invariance also gives the form 
for ( , ) stated. This, and the actions D, r> make sense over Q= and do not require formal 
powerseries. 0 

The bosonisation here for the simplest case BUq(su~)xVq(su2) was studied in de- 
tail in [25] so we do not repeat this here. The new feature is that we know now that its 
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*-algebra, which we developed there as q-deformed Mackey quantisation of a particle 
moving on the mass hyperboloid in q-Minkowski space, is a quasi-* Hopf algebra. More- 
over, the fundamental representation mt> = 3 extends as a ‘matrix braided-derivation’ and 
was computed (in a right-hand version) for the BSU,(2) case in [54], to which we re- 
fer for details. These derivatives form braided left-invariant vector fields on the braided 
group and realise the matrix braided-Lie algebra & 4 [54]. From either point of view it 

is natural to consider functional analysis on BG, as the algebra of ‘co-ordinate functions’ 
of the braided group. The above theory now provides the sesquilinear form via the inte- 
gral which to lowest order (carrying out required the transmutation explicitly) comes out 
as 

s l= 1, Srr2=Jub=Sac=Sb2=Sbd=Sc2=Scd=0, 

s 
ad = l/(1 + q2) 

s 
d2 = (1 - q-2)/(1 + q*) (53) 

in terms of the generators 

a b 

( > c d 

and the product of BSU,(2). The integrals of the other quadratic expressions are de- 
termined by the relations of BSU,(2). Our left-invariant vector fields and their conju- 
gates are adjoint with respect to the corresponding sesquilinear form (b, c) = [ b*c, etc., 
where 

(:: ;:)=(; ;) 
is the Hermitian *-braided group structure of BSU, (2). This demonstrates the possibility of 
a braided approach to q-harmonic analysis on braided versions of compact quantum groups, 
to be considered elsewhere. Note that in this family of examples the sesquilinear form ( , ) 
clearly remains conjugate-symmetric, i.e., we are in the usual setting as in Lemma 4.6 after 
redefining *. We do lose, however, positive definiteness. 

5. Differential representation on space-time and concluding remarks 

In this section we will consider how our above results apply to the fundamental and con- 
jugate fundamental representations of the inhomogeneous quantum groups from Section 3. 
We are now in a position to understand the subtle role of the *-structure, which is obviously 
crucial for the interpretation of these quantum groups as, for example, the q-Poincare group 
in q-deformed geometry. 

We begin with the fundamental and conjugate fundamental representations themselves on 
the ‘space-time’ braided group V’(R’, R) with co-ordinates {xi ) dual to the linear ‘momen- 
tum’ part of the inhomogeneous quantum group. The existence of a general fundamental 
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representation on ‘space-time’ was the main result of the braided approach in [9] in the 
form of a ‘rotation+translation’ coaction of the dual quantum groups. Evaluating against 
this coaction (or from Corollary 2.2) we obtain at once 

11’DX2 =x2hR2t, 1, DX2 =X&R-‘, 

h’ D Xi = hXi, pi DXj = -@j, (54) 

which we have used already in (25) and (33) in Section 3. This then extends to products as 
a module algebra. Explicitly: 

Proposition 5.1. The inhomogeneous quantum group V(R’, R)>a G in the setting of 
Section 3 acts covariantly on the braided covector algebra V “(R’, R) with generators 
x = {xi) by thefundamental and conjugate fundamental representiations in Corollaries 2.2 
and 2.4 as 

A’ D (Xi, . ‘Xi,) = hm.Xi, . . Xi,, 

Ifij D (Xi, . . . Xi,) = hmXjl . . . Xjm [ 1, m + 1; R]z!::i$, 

l-‘j D (Xi, ’ . ’ Xi,) = kpmXjl ’ ’ . Xj,,, [ 1, m + 1; R~,‘]j~!::i~j, 

-piD(xi, .“xi,,,)=xj2...xj,,,[m; R&‘]~~~~::~~, 

piG(Xi, ” .Xi,> =Xj.2 ” . xjm [m ; R] t:;::F’ , 

where[l,m+l; RI = (PR)12(PR)23...(PR)mm+l, and[m; R] = [l, 2; R]+[l, 3; R]+ 
. . . + [ 1. m; R] is the braided integer matrix in [22]. The action of the At, I* generators is 
the same for the two representations. 

Proof Here V’(R’, R) is the algebra ~1x2 = ~2x1 R’ forming a braided group [22]. Its 
braided group duality with the braided vector algebra used for the linear part of the in- 
homogeneous quantum group is ev(p’, xj) = 6’j. Since we know (by the bosonisation 
theory) that the fundamental representation makes V’( R’, R) a module algebra, the action 
on products is then determined. The action of I* on products is immediate from their ma- 
trix coproduct. The braided integer matrix is a sum of the corresponding matrices, so it is 
clear by induction that pi acts by such matrices given the action of Z* and the form of the 
coproduct and conjugate coproduct. In the case of the conjugate coproduct the action of pi 
is necessarily braided differentiation since the map in Corollary 2.4 is exactly its definition 
in [22]. Note that we have - sign in the first action D of pi from the braided antipode in 
Corollary 2.2 but not in the conjugate action r> in Corollary 2.4. 0 

In particular, the covariant action of pi using the conjugate coproduct d is precisely the 
braided differentiation pi = 6” as introduced for general braided linear spaces in [22]. In 
fact, we know this without computation because evaluation against the braided coproduct 
as in the asbtract definition of rZ in Corollary 2.4 is precisely the definition of 3’ in [22] 
as an ‘infinitesimal coaddition’ in the braided approach. The covariant action of pi using 
the original coproduct A is by ‘conjugate’ derivatives -pi = 3’ in which the role of R is 
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replaced by R;t’ when extending to products. It is an infinitesimal translation from the right 

and corresponds to the ‘right derivatives’ a in [8], converted over to left-acting derivatives 
by means of the braided antipode. This is the reason for the extra - sign in the action of p’. 
The a obey a braided-Leibniz rule with @-’ as explained in [22], while the 3 obey a braided- 
Leibniz rule with Iv as we have seen already in the proof of Corollary 2.2. The reversed 
matching of 6 with a, etc., is a historical accident reflecting the fact that the unbarred A 
and unbarred a are each natural in their own settings. 

One can also consider xi as an operator on V’(R’, R) by left multiplication then the 
corresponding braided-Leibniz rules are expressed as the commutation relations 

81x2 -x2R21al = id, &x2 - ~R-l$l = id, 

cf. specific examples in [58,59,31], etc. If we assume a quantum metric and lower indices 
by & = viaa’ and Fli = qiasa then these become 

alx2 - h-*X2al R;,* = II, 8,x2 - k2x28, R = 17 (56) 

using the quantum metric identities (28). These represent the lower-index momentum gen- 
erators pi for the two actions. This is how the constructive braided approach to differentials 
[22] recovers previous approaches [58,60] where examples of such commutation relations 
were postulated as an ansatz or deduced from postulated relations between differential forms 
within an axiomatic approach for these. 

We obviously have similar formulae for the representations of the ‘spinorial’ forms RiOi, 
in Sections 3.1 and 3.2. This is just a change of notation from the vector form to the matrix 
form, at = aioi, and $1 = @i,, say. Clearly 

R&x1 R - K2x1a2 = Rq21 R, 31x2 - h2Rx& R = ‘I (57) 

in the A(R) case where a, 3 obey the A(R) relations R21 ata2 = &at R, etc., just because 
this is how R', R appear in this notation (3 1). Likewise, we have 

&R21u1 R - K2R-‘uI R& = r](*)R2,rf)R, 

R-l& Ru2 - h2u2R2& R = R-‘~]“)RQ(~’ (58) 

in the B(R) case where a, j obey the B(R) relations R21al Ra2 = a2R21al R, etc., because 
this is how R', R appear in this notation (37). Here 7 = n(l) @J nc2) is ~IJ = q”‘i,‘Oj, as 
an element of Mn @ Mn, and the right-hand sides are typically multiples of it as well. We 
include these formulae for completeness only; they are just the standard construction (56) 
applied to the particular R', R introduced in [3,26,28]. 

Since the braided approach derives such relations from the braided coproduct rather than 
imposing them axiomatically, we are now in a position to say more about the derivatives 
a, 2 than is evident from the relations alone. 

Corollary 5.2. The braided antipode S(x) = -x of the braided group V “( R’, R) inter- 
twines the actions of a, -8, 

gi = -$s _. 
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Proo$ The diagrammatic proof is given in the proof of Corollary 4.6 and is a result entirely 
as operators on the braided group V’(R’, R) in the setting of [22]. For a direct proof the 
key fact is that S extends to products as a braided-anti-algebra homomorphism (7) giving 
it an expression in terms of R-matrices [9] which intertwines the braided integer matrices 
in Proposition 4.1. The operator S is also covariant under the background quantum group 
H [9] and hence intertwines its action also. It also preserves degree, hence the action 
of 16. ??

This general result contrasts with other approaches, e.g. (33,611 where it is sometimes 
possible to write the 3 as some non-linear function of the a. We have not taken this line 
here: in the braided approach Corollary 5.2 is more natural since the braided antipode 2 
is inversion on the additive braided group, i.e., the ‘braided parity operator’ and plays an 
important role in numerous other constructions as well, such as the braided Fourier theory 
in [24,62]. In usual underformed constructions we see it merely as a minus sign, but in the 
braided case it extends as a non-trivial operator. 

Next, we consider *-structures. We have seen in Section 4 the need to consider a different 
*-structure * on the ‘space-time’ braided group C determined by duality (8) with the linear 
‘momentum’ part B of our inhomogeneous quantum group. We have used for the latter the 
standard *-structure which is characterised by the unitarity condition (19) with respect to 
the action of the background quantum group. Hence for the space-time *-braided group 
we need one which is characterised by (45) a condition which is different when S2 # id. 
This splitting into two *-structures (even when the braided groups are isomorphic via the 
quantum metric) is therefore a new feature of q-deformation. The duality pairing of *- 
braided groups in the present linear case was studied in [8] from where we may deduce the 
required * appropriate to the * used for the momentum generators pi in Section 3. For the 
type I case (as in Propositions 3.1 and 3.4) and the real type II case (used in Proposition 3.7) 
they are 

a 
P 

i* = 

1 

ViaP 3 real type I, 

&labPb, real type II, 

xi* = 
( 

&irlia, real type I, 

Xb’ITaIlab, real type II, 

where ‘1 is the quantum metric and in the type II case we also have an involution-on its 
indices. This corresponds via the quantum metric to p;* = p; as used in Proposition 3.7 
in the form piOil Hermitian. With * defined correctly, we see from Proposition 4.8 that it 
connects a. 3. In the real type I setting of Proposition 3.2, this is 

(aif(x = h’S21Pi D J,f(x)* (60) 

for all multinomials f(x). We used the antipode from Proposition 3.1. A more intrinsic 
formulation (purely in terms of the linear braided group) is possible [8] if we use right- 

acting derivatives z in place of 3. There are corresponding formulae for the spinorial 
versions in Sections 3.1 and 3.2 as well. 
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We also needed in Section 4 the braided group automorphisms &, 8,, 6%. Evaluating the 
corresponding elements of our background quantum group I?, etc., against the quantum 
matrix transformation of the Xi gives at once 

&(ni) =&flit O&Xi) = X~Uai, &(xi) = idi, 

jj = p,aj, J, = *,i 
(61) 

J J a’ (uv)“* = h, id, 

where i = ((R’2)-I)‘2 is the second inverse (here t2 denotes transposition in the second 
matrix factor of M,, C3 Mn.) The action of the dilaton with its contribution At2 to v, u and 
u cancels the quantum group normalisation factor otherwise appearing in these formulae. 
The 8, applies in the case that the background quantum group is ribbon and the matrix 
representation is irreducible, which is typical in examples. The extension of the &, &, 0” 
is as algebra homomorphisms. 

Proposition 5.3. For the examples fis (2)x Uq(su2)~Uq(su2) and BM, (2)~ lJs(su2) 
M- U, (SZQ) offour-dimensional q-Euclidean and q-Minkowski-Poincare’groups, we have 

Moreovel; on the q-Euclidean and q -Minkowski space-time co-ordinates we have 

edh . . .x,>*> = (Xl . . .&)*A;. 

Proo$ The first part is best computed from (61) using the appropriate R from [26,28], but 
can also be done directly from the v, u, u elements in each copy of U, (su2). Moreover, the 
* structure on the q-space-time co-cordinates in these two cases comes out from (59) as 

(“c: ;:)=(_qtlb -II’)? (;: 9 = (q$, ‘;) (62) 

for the algebras A& (2) and BM, (2), respectively. From this we see at once that 0,(x:) = 
x,?h, where * is the standard *-structure on the space-time co-ordinates (obeying the uni- 
tarity condition (19)) for the two cases. We denote the space-time co-ordinates in both cases 
by Xi and the general form of * is [8] 

x; = xa nai 9 real type I, 

Xi7 real type II. 
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Our background quantum groups in these examples are ribbon and c* = o D c* where 
u = uv -’ is Drinfeld’s group- like element [38] computed from that of U, (su2). So we can 
also take the point of view leading to (52) for these examples. cl 

We see that Bv o * is not an involution, but it is very close to one, differing only by 
multiples in each degree. There is a similar form for the S09(n)-covariant Rt spaces in 
[32] regarded as linear braided groups. Finally, we need for our constructions an invariant 
integral. There are two problems here, both of which can be addressed. The first is that 
we cannot expect polynomials in the co-ordinate generators x; on our q-deformed linear 
spaces to be integrable; this can be handled by defining directly a Gaussian-weighted integral 
instead [24]. The second problem is that we cannot expect the integral to be invariant under 
the dilaton part h[ of the inhomogeneous quantum group. This second problem is dealt with 
by slightly generalising our Lemma 4.7 as follows: suppose that 4 is a linear functional 
C + @ which is invariant under some subalgebra of the quasi-* Hopf algebra, and that the 
coproduct Ah = h(l) @.h(2) of a given element of the latter can be written with the h(2) parts 
lying in the subalgebra. Then we can still conclude (h*t&, c)$ = (b, h D c-)z as before. This 
is evident from (44) where we wrote the required step needed in Lemmas 4.6 and 4.7 quite 
explicitly. So we consider now a map s on V’(R’, R) which is invariant under translation 
with respect to 3 and under the background quantum group without the dilaton. Hence it is 
invariant under the subalgebra of the inhomogeneous quantum group without the dilaton. 
From the form of the coproduct in Proposition 3.1 we see that we have the right form for 
all the generators except the dilaton he. So the the fundamental and conjugate fundamental 
representations are indeed mutually adjoint as regrads the actions of p, 1* (but not of A’) 
with respect to 

(b, C) = s (hi D b*)C. 

Here the action of hi is multiplication of xi by h, in the setting of Proposition 5.3 and 
similar examples. 

More precisely, the appropriately covariant integration functional on general braided 
linear spaces has been constructed in [24] in a Gaussian-weighted form. We need to give 
a right-invariant version appropriate to 3 rather than 8 as given there. Briefly, suppose 
formally that there is a Gaussian S solving the equation a’g = -x0 naig as a power series. 
With the restrictions on R, 17 in [24, Section V.l] it takes the form of a q-exponential S = 

-(l+L&‘x.x 
eA2 which is central and invariant under 1% and *. We do not need its precise form 
explicitly, however. Instead, we define directly a linear functional 2 : C + C which plays 
the role of the ratio 2( f(x)) = J f (x)g/ J 2. We regard the left-hand side as a definition 
of the right-hand side. The former, in turn, is defined directly in terms of the R-matrix R 
by means of induction as cf. [24] 

2[1] = 1, Z[Xi] = 0, Z[xixj] = h-2qabR-‘ajbi, 



56 S. Majid/Joumal of Geometry and Physics 22 (1997) 14-58 

m-2 
2[Xi, . . . Xi,] = c 2[Xj, . . . X&xa,+3 ’ . . Xa,] 

r=O 

X 2[Xi,+~Xa,+zI[~ + 2, w 41 Iir+2...im -I G+z”Gn *-2+2-r) 

We refer to [24] for the detailed derivation (for the left-handed case appropriate to a). For 
the example of SO, (n)-covariant quantum planes such Gaussian-weighted integrations are 
known by other more explicit calculations as well [63]. We conclude in particular that a, a 
are mutually adjoint with respect to the sesqulinear form defined implicitly by 

(64) 

where b, c are multinomials in xi and ( 1 is the degree. More precisely, we take the right-hand 
side directly as a definition of a Gaussian-weighted sesquilinearform 2(b, c) = A!,?Z(b*c) 
even when j and g are not defined. The adjointness property then becomes 

2((l*)* D b, c) = 2(b, I* D c), 

Z((a’)*b, c) = -2(b, 8%) + 2(b, .W((x, ~3 c))$%~‘~‘, (65) 

where .9(xi, @xxi, . ..xi.,,) = x,, . ..x.,,,[l, m; R21]~;.::~~’ from the standard braiding in 

the covector algebra [22], and ai* = viaa’, etc. is as for pi* in (59) depending on the 
case. The two terms on the right come immediately from the computation of s(cg) using 
the braided-Leibniz rule followed by the equation for the Gaussian. Equivalently, we use 
the Poincart algebra coproduct (26) and the action of ht, I- in Proposition 5.1. Finally, 
once (65) is obtained it may be verified directly for our q-Minkowski and q-Euclidean 
examples (at least to low order) on multinomials b, c even when l, S are not given. A 
formal inductive proof is rather long and will be considered elsewhere. Non-degeneracy is 
also clear for our standard examples (and for generic q) since it holds for q = 1. Finally, 
our standard examples are unimodular which, combined with [8, Section 41, tells us that 
2 = 2(( )*), as one may verify directly for low order. This means that our sesquilinear 
form is conjugation-symmetric in the deformed sense 

2(c, b) = (A”‘/db’)2(b c) ” ” , . 

One can also leave out h, in the definition of 2(, ) and have the more standard conjugation- 
symmetry, but at the price of a spurious factor A;’ on the left-hand side of the adjointness 
property of 8 in (65). This adjointness, combined with Corollary 5.2 is the sense in which the 
differential representation of the q-Poincare algebra or inhomogeneous quantum group is 
‘unitary’ in our braided approach. The sesquilinear form 2( , ) appears to be the appropriate 
starting point for q-quantum mechanics and q-scaler field theory in this approach. It remains 
to develop suitable tools (such as a braided version of Wick’s theorem) for the computation 
of these Gaussian-weighted integrals and ‘braided L2 inner products’ in a more closed 
form. It also remains to consider the appropriate formulation of completions, domains of 
operators, etc. for the corresponding functional analysis. This is a direction for further work. 
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